决策树:从根节点开始一步步走到叶子节点(决策)
所有的数据最终都会落到叶子节点,既可以做分类也可以做回归
根节点:第一个选择点
非叶子节点与分支:中间过程
叶子节点:最终的决策结果

训练阶段:从给定的训练集构造出来一棵树(从跟节点开始选择特征, 如何进行特征切分)
测试阶段:根据构造出来的树模型从根节点一直走到叶子节点
目标:通过一种衡量标准,来计算通过不同特征进行分支选择后的分类情况,找出来最好的那个当成根节点
熵:熵是表示随机变量不确定性的度量 (解释:物体内部的混乱程度,比如杂货市场里面什么都有那肯定混乱呀,专卖店里面只卖一个牌子的那就稳定多啦)
公式:H(X)=- ∑ pi * logpi, i=1,2, ... , n
比如:
A集合[1,1,1,1,1,1,1,1,2,2] 、B集合[1,2,3,4,5,6,7,8,9,1]
显然A集合的熵值要低,因为A里面只有两种类别,相对稳定一些而B中类别太多了,熵值就会大很多
熵:不确定性越大,得到的熵值也就越大,当p=0或p=1时,H(p)=0,随机变量完全没有不确定性,当p=0.5时,H(p)=1,此时随机变量的不确定性最大

如何决策一个节点的选择呢?
信息增益:表示特征X使得类Y的不确定性减少的程度。(分类后的专一性,希望分类后的结果是同类在一起)
数据:14天打球情况
特征:4种环境变化
目标:构造决策树

划分方式:4种
在历史数据中(14天)有9天打球,5天不打球,所以此时的熵应为:
4个特征逐一分析,先从outlook特征开始:
Outlook = sunny时,熵值为0.971
Outlook = overcast时,熵值为0
Outlook = rainy时,熵值为0.971
ID3:信息增益
问题:当数据存在一个ID特征,那么,决策树在id特征的熵为0,就会根据ID进行分支,但是ID特征毫无意义。决策树无法处理矩阵稀疏,种类比较多的id特征
(和熵的衡量标准类似,计算方式不相同)
连续值怎么办?

为什么要剪枝:决策树过拟合风险很大,理论上可以完全分得开数据

- import matplotlib.pyplot as plt
- from math import log
- import operator
-
-
- def createDataSet():
- dataSet = [[0, 0, 0, 0, 'no'],
- [0, 0, 0, 1, 'no'],
- [0, 1, 0, 1, 'yes'],
- [0, 1, 1, 0, 'yes'],
- [0, 0, 0, 0, 'no'],
- [1, 0, 0, 0, 'no'],
- [1, 0, 0, 1, 'no'],
- [1, 1, 1, 1, 'yes'],
- [1, 0, 1, 2, 'yes'],
- [1, 0, 1, 2, 'yes'],
- [2, 0, 1, 2, 'yes'],
- [2, 0, 1, 1, 'yes'],
- [2, 1, 0, 1, 'yes'],
- [2, 1, 0, 2, 'yes'],
- [2, 0, 0, 0, 'no']]
- labels = ['F1-AGE', 'F2-WORK', 'F3-HOME', 'F4-LOAN']
- return dataSet, labels
-
-
- def createTree(dataset, labels, featLabels):
- classList = [example[-1] for example in dataset]
- if classList.count(classList[0]) == len(classList):
- return classList
- if len(dataset[0]) == 1:
- # 返回最多的类
- return majorityCnt(classList)
- # 选择最好的分裂节点
- bestFeat = chooseBestFeatureToSplit(dataset)
- # 最好的标签
- bestLabels = labels[bestFeat]
- featLabels.append(bestLabels)
- myTree = {bestLabels: {}}
- del labels[bestFeat]
- featValue = [example[bestFeat] for example in dataset]
- featUniqual = set(featValue)
- for value in featUniqual:
- sublabels = labels[:]
- myTree[bestLabels][value] = createTree(splitDataSet(dataset, bestFeat, value), sublabels, featLabels)
- return myTree
-
-
- def majorityCnt(classList):
- classCont = {}
- for vot in classList:
- if vot not in classCont.keys():
- classCont[vot] = 0
- classCont[vot] += 1
- classCont = sorted(classCont, key=operator.itemgetter(1), reverse=True)
- return classCont[0][0]
-
-
- def chooseBestFeatureToSplit(dataset):
- num_features = len(dataset[0]) - 1
- baseEntropy = calcShannonEnt(dataset)
- bestInfoGain = 0
- bestFeature = -1
- for i in range(num_features):
- featList = [example[i] for example in dataset]
- uniqueVals = set(featList)
- newEntropy = 0
- for val in uniqueVals:
- subDataSet = splitDataSet(dataset, i, val)
- prop = len(subDataSet) / len(dataset)
- newEntropy += prop * calcShannonEnt(subDataSet)
-
- infogain = baseEntropy - newEntropy
- if infogain > bestInfoGain:
- bestInfoGain = infogain
- bestFeature = i
- return bestFeature
-
-
- def splitDataSet(dataset, axis, val):
- retDataset = []
- for feature in dataset:
- if feature[axis] == val:
- reducedFeatVec = feature[:axis]
- reducedFeatVec.extend(feature[axis + 1:])
- retDataset.append(reducedFeatVec)
- return retDataset
-
-
- def calcShannonEnt(dataset):
- num_examples = len(dataset)
- labelsCont = {}
- for featVec in dataset:
- if featVec[-1] not in labelsCont.keys():
- labelsCont[featVec[-1]] = 0
- labelsCont[featVec[-1]] += 1
-
- ShannonEnt = 0
- for key in labelsCont:
- prop = labelsCont[key] / num_examples
- ShannonEnt -= prop * log(prop, 2)
- return ShannonEnt
-
-
- def getNumLeafs(myTree):
- numLeafs = 0
- firstStr = next(iter(myTree))
- secondDict = myTree[firstStr]
- for key in secondDict.keys():
- if type(secondDict[key]).__name__ == 'dict':
- numLeafs += getNumLeafs(secondDict[key])
- else:
- numLeafs += 1
- return numLeafs
-
-
- def getTreeDepth(myTree):
- maxDepth = 0
- firstStr = next(iter(myTree))
- secondDict = myTree[firstStr]
- for key in secondDict.keys():
- if type(secondDict[key]).__name__ == 'dict':
- thisDepth = 1 + getTreeDepth(secondDict[key])
- else:
- thisDepth = 1
- if thisDepth > maxDepth: maxDepth = thisDepth
- return maxDepth
-
-
- def plotNode(nodeTxt, centerPt, parentPt, nodeType):
- arrow_args = dict(arrowstyle="<-")
-
- createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction',
- xytext=centerPt, textcoords='axes fraction',
- va="center", ha="center", bbox=nodeType, arrowprops=arrow_args)
-
-
- def plotMidText(cntrPt, parentPt, txtString):
- xMid = (parentPt[0] - cntrPt[0]) / 2.0 + cntrPt[0]
- yMid = (parentPt[1] - cntrPt[1]) / 2.0 + cntrPt[1]
- createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)
-
-
- def plotTree(myTree, parentPt, nodeTxt):
- decisionNode = dict(boxstyle="sawtooth", fc="0.8")
- leafNode = dict(boxstyle="round4", fc="0.8")
- numLeafs = getNumLeafs(myTree)
- depth = getTreeDepth(myTree)
- firstStr = next(iter(myTree))
- cntrPt = (plotTree.xOff + (1.0 + float(numLeafs)) / 2.0 / plotTree.totalW, plotTree.yOff)
- plotMidText(cntrPt, parentPt, nodeTxt)
- plotNode(firstStr, cntrPt, parentPt, decisionNode)
- secondDict = myTree[firstStr]
- plotTree.yOff = plotTree.yOff - 1.0 / plotTree.totalD
- for key in secondDict.keys():
- if type(secondDict[key]).__name__ == 'dict':
- plotTree(secondDict[key], cntrPt, str(key))
- else:
- plotTree.xOff = plotTree.xOff + 1.0 / plotTree.totalW
- plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
- plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
- plotTree.yOff = plotTree.yOff + 1.0 / plotTree.totalD
-
-
- def createPlot(inTree):
- fig = plt.figure(1, facecolor='white') # 创建fig
- fig.clf() # 清空fig
- axprops = dict(xticks=[], yticks=[])
- createPlot.ax1 = plt.subplot(111, frameon=False, **axprops) # 去掉x、y轴
- plotTree.totalW = float(getNumLeafs(inTree)) # 获取决策树叶结点数目
- plotTree.totalD = float(getTreeDepth(inTree)) # 获取决策树层数
- plotTree.xOff = -0.5 / plotTree.totalW;
- plotTree.yOff = 1.0; # x偏移
- plotTree(inTree, (0.5, 1.0), '') # 绘制决策树
- plt.show()
-
-
- if __name__ == '__main__':
- dataset, labels = createDataSet()
- featLabels = []
- myTree = createTree(dataset, labels, featLabels)
- createPlot(myTree)
