点权的 树上差分
#include
//----
#define LITERAL_ static constexpr
#define GET_( _t, _i) ::std::get< _i>( _t)
#define PAR_( _type, _name) const _type & _name
#define IS_IN_RANGE_( _c, _l, _r) ( ( (_c) >= (_l)) && ( (_c) <= (_r)))
#define FOR_( _i, _l, _r, _s) for( int _i = _l; _i <= _r; _i += _s)
#define FOR_RE_( _i, _l, _r, _s) for( int _i = _l; _i >= _r; _i -= _s)
//--
#ifdef SUPIMO_DEBUG_
#define DEBUG_( ...) __Debug( __VA_ARGS__, __LINE__)
#else
#define DEBUG_( ...) ( void)0
#endif
//--
using namespace ::std;
using Ll_ = long long;
//--
bool __Debug_is_first = true;
template< class _Last>
void __Debug( _Last _last){
if( __Debug_is_first){
cout << "(Debug) ";
__Debug_is_first = false;
}
cout << " [Line: " << _last << "]" << endl;
__Debug_is_first = true;
}
template< class _Head, class ... _Other>
void __Debug( _Head _head, _Other ... _other ){
if( __Debug_is_first){
cout << "(Debug) ";
__Debug_is_first = false;
}
cout << _head << ", ";
__Debug( _other ...);
}
//----
LITERAL_ int N_ = int( 5e4) + 5;
LITERAL_ int Root_ = 1;
int N, M; //< (点数) (操作)
int Head[ N_], Ver[ N_ * 2], Nex[ N_ * 2], Edges;
int Log[ N_]; //< Log[ a] = b; 2^b <= a, 最大的b
int Depth[ N_], Fa[ N_][ 21];
int Diff[ N_]; //< 树上差分, 起点为叶节点, 即Diff[ i] = A[ i] - ( A[ son(i)]之和)
int A[ N_];
//--
void Init_graph(){
Edges = 0;
memset( Head, -1, sizeof( Head));
}
void Add_edge( PAR_( int, _a), PAR_( int , _b)){
Ver[ Edges] = _b;
Nex[ Edges] = Head[ _a];
Head[ _a] = Edges;
++ Edges;
}
void Dfs_lca( PAR_( int, _cur), PAR_( int, _fa)){
for( int nex, i = Head[ _cur]; ~i; i = Nex[ i]){
nex = Ver[ i];
if( nex != _fa){
Depth[ nex] = Depth[ _cur] + 1;
//--
Fa[ nex][ 0] = _cur;
FOR_( step, 1, Log[ Depth[ nex]], 1){
Fa[ nex][ step] = Fa[ Fa[ nex][ step - 1]][ step - 1];
// DEBUG_( nex, step, Fa[ nex][ step]);
}
//--
Dfs_lca( nex, _cur);
}
}
}
void Build_lca(){
{ //* build `Log`
FOR_( i, 1, N, 1){
if( 1 == i){
Log[ 1] = 0;
}
else{
if( ( 1 << ( Log[ i - 1] + 1)) == i){
Log[ i] = Log[ i - 1] + 1;
}
else{
Log[ i] = Log[ i - 1];
}
}
}
}
//--
Depth[ Root_] = 0;
Dfs_lca( Root_, -1);
}
int Lca( PAR_( int, _a), PAR_( int, _b)){
int low = _a, hig = _b;
if( Depth[ low] < Depth[ hig]){
swap( low, hig);
}
while( Depth[ low] != Depth[ hig]){
low = Fa[ low][ Log[ Depth[ low] - Depth[ hig]]];
}
if( low == hig){ //< 如果不判断, 假如low=Root, 则下面代码中的Log[ 0]是个未定义行为
return low;
}
FOR_RE_( i, Log[ Depth[ low]], 0, 1){ //< not `Log[ low]`
if( Fa[ low][ i] != Fa[ hig][ i]){
low = Fa[ low][ i];
hig = Fa[ hig][ i];
}
}
assert( Fa[ low][ 0] == Fa[ hig][ 0]);
return Fa[ low][ 0];
}
void Dfs_build_diff( PAR_( int, _cur), PAR_( int, _fa)){
Diff[ _cur] = A[ _cur];
for( int nex, i = Head[ _cur]; ~i; i = Nex[ i]){
nex = Ver[ i];
if( nex != _fa){
Diff[ _cur] -= A[ nex];
//--
Dfs_build_diff( nex, _cur);
}
}
}
void Build_diff(){
// memset( Diff, 0, sizeof( Diff)); //< 用这个也可以.
Dfs_build_diff( Root_, -1);
}
void Dfs_restore_diff( PAR_( int, _cur), PAR_( int, _fa)){
A[ _cur] = Diff[ _cur];
for( int nex, i = Head[ _cur]; ~i; i = Nex[ i]){
nex = Ver[ i];
if( nex != _fa){
Dfs_restore_diff( nex, _cur);
A[ _cur] += A[ nex];
}
}
}
void Restore_diff(){
Dfs_restore_diff( Root_, -1);
}
void __Solve(){
Init_graph();
scanf("%d%d", &N, &M);
FOR_( i, 1, N-1, 1){
int a, b;
scanf("%d%d", &a, &b);
Add_edge( a, b);
Add_edge( b, a);
}
Build_lca();
Build_diff();
FOR_( i, 1, M, 1){
int a, b;
scanf("%d%d", &a, &b);
int lca = Lca( a, b);
int fa_lca = ( lca == Root_ ? -1 : Fa[ lca][ 0]);
Diff[ a] += 1;
Diff[ b] += 1;
Diff[ lca] -= 1;
if( fa_lca != -1){
Diff[ fa_lca] -= 1;
}
}
Restore_diff();
int ans = 0;
FOR_( i, 1, N, 1){
ans = max( ans, A[ i]);
}
cout << ans << endl;
}
//--
int main(){
//--
int tests = 1;
// scanf("%d", &tests);
for( int i = 0; i < tests; ++i){
__Solve();
}
return 0;
}