线上有一个很简单的查询语句,近似如下:
- select time,name,add_u,active_u,avgtime,……
- from app.content_day where pid = '-1' and pid_sid = 'all' and os_type = 'all' and time between '2022-07-23' and '2022-07-23'
- order by add_user desc limit 50
只查一张表,底层是HIVE表,但是耗时需要5秒左右。
首先想到是explain看下执行过程:
- Output[time,……] - TopN[50 by (add_user DESC_NULLS_LAST)] => [add_user:integer,……] - LocalExchange[SINGLE] () => [……] - RemoteStreamingExchange[GATHER] => [……] - TopNPartial[50 by (add_user DESC_NULLS_LAST)] => [……] - ScanFilterProject[table = TableHandle {connectorId='hive', connectorHandle='HiveTableHandle{schemaName=app, tableName=content_day, analyzePartitionValues=Optional.empty}', layout='Optional[app.content_day{domains={pid=[ [[-1]] ], pid_sid=[ [[all]] ], time=[ [[2022-07-23]] ], os_type=[ [[all]] ]}}]'}, filterPredicate = (((os_type) = (VARCHAR all)) AND ((pid) = (VARCHAR -1))) AND (((pid_sid) = (VARCHAR all)) AND ((time) = (VARCHAR 2022-07-23)))] => [……] Estimates: {rows: 148346 (19.59MB), cpu: 30036647.00, memory: 0.00, network: 0.00}/{rows: 85 (11.45kB), cpu: 60073294.00, memory: 0.00, network: 0.00}/{rows: 85 (11.45kB), cpu: 60085014.38, memory: 0.00, network: 0.00} LAYOUT: app.content_day{domains={……:int:8:REGULAR
直观看到cpu这个数值特别大,rows14万行,似乎还可以,很难得出结论。
还有另外一个分析执行计划命令,会更加详细。
EXPLAIN ANALYZE + SQL
Fragment 1 [SINGLE] CPU: 1.54ms, Scheduled: 1.77ms, Input: 50 rows (4.33kB); per task: avg.: 50.00 std.dev.: 0.00, Output: 50 rows (4.33kB) Output layout: [……] Output partitioning: SINGLE [] Stage Execution Strategy: UNGROUPED_EXECUTION - TopN[50 by (add_user DESC_NULLS_LAST)] => [……r] CPU: 0.00ns (0.00%), Scheduled: 0.00ns (0.00%), Output: 50 rows (4.33kB) Input avg.: 50.00 rows, Input std.dev.: 0.00% - LocalExchange[SINGLE] () => [……] CPU: 0.00ns (0.00%), Scheduled: 0.00ns (0.00%), Output: 50 rows (4.33kB) Input avg.: 3.13 rows, Input std.dev.: 387.30% - RemoteSource[2] => [……] CPU: 0.00ns (0.00%), Scheduled: 0.00ns (0.00%), Output: 50 rows (4.33kB) Input avg.: 3.13 rows, Input std.dev.: 387.30%
Fragment 2 [SOURCE] CPU: 4.68s, Scheduled: 5.09s, Input: 2973242 rows (105.38MB); per task: avg.: 1342041.50 std.dev.: 1342041.50, Output: 50 rows (4.33kB) Output layout: [……] Output partitioning: SINGLE [] Stage Execution Strategy: UNGROUPED_EXECUTION - TopNPartial[50 by (add_user DESC_NULLS_LAST)] => [……] CPU: 9.00ms (0.19%), Scheduled: 9.00ms (0.16%), Output: 50 rows (4.33kB) Input avg.: 314.00 rows, Input std.dev.: 100.00% - ScanFilterProject[table = TableHandle {connectorId='hive', connectorHandle='HiveTableHandle{schemaName=app, tableName=map_day, analyzePartitionValues=Optional.empty}', layout='Optional[app...domains={pid=[ [[-1]] ], pid_sid=[ [[all]] ], time=[ [[2022-07-23]] ], os_type=[ [[all]] ]}}]'}, grouped = false, filterPredicate = (((os_type) = (VARCHAR all)) AND ((pid) = (VARCHAR -1))) AND (((pid_sid) = (VARCHAR all)) AND ((time) = (VARCHAR 2022-07-23)))] => [……] CPU: 4.67s (99.81%), Scheduled: 5.52s (99.84%), Output: 628 rows (53.55kB) Input avg.: 1483350 rows, Input std.dev.: 100.00% LAYOUT: ……REGULAR Input: 2684083 rows (107.24MB), Filtered: 99.98%
基本可以坐实一件事儿,这个慢SQL需要扫描297万行数据。
进入Presto的Dashboard,也能看到一些具体信息:
SQL执行时出现明显的峰值
点开查询执行的详细信息发现输入行数也是2.97百万。
Resource Utilization Summary
CPU Time 4.73s
Scheduled Time 5.10s
Blocked Time 1.45m
Input Rows 2.97M
Input Data 107.24MB
Raw Input Rows 2.97M
Raw Input Data 25.52MB
Peak User Memory 0B
Peak Total Memory 2.93MB
Memory Pool general
Cumulative User Memory 0 seconds
Output Rows 50.0
Output Data 4.33kB
Written Output Rows 0.00
Written Output Logical Data Size 0B
Written Output Physical Data Size 0B
Timeline
Parallelism
0.89
Scheduled Time/s
0.96
Input Rows/s
506K
Input Bytes/s
20.2MB
Memory Utilization
0B
回到这个HIVE表本身,表中全量数据297万,问题在这些数据每日全量更新,没有按日分片,导致全表扫描。