21 世纪,许多人得了一种奇怪的病:起床困难综合症,其临床表现为:起床难,起床后精神不佳。
作为一名青春阳光好少年,atm 一直坚持与起床困难综合症作斗争。
通过研究相关文献,他找到了该病的发病原因: 在深邃的太平洋海底中,出现了一条名为 drd 的巨龙,它掌握着睡眠之精髓,能随意延长大家的睡眠时间。
正是由于 drd 的活动,起床困难综合症愈演愈烈, 以惊人的速度在世界上传播。
为了彻底消灭这种病,atm 决定前往海底,消灭这条恶龙。
历经千辛万苦,atm 终于来到了 drd 所在的地方,准备与其展开艰苦卓绝的战斗。
drd 有着十分特殊的技能,他的防御战线能够使用一定的运算来改变他受到的伤害。
具体说来,drd 的防御战线由 n 扇防御门组成。
每扇防御门包括一个运算 op 和一个参数 t,其中运算一定是 OR,XOR,AND 中的一种,参数则一定为非负整数。
如果还未通过防御门时攻击力为 x,则其通过这扇防御门后攻击力将变为 x op t。
最终 drd 受到的伤害为对方初始攻击力 x 依次经过所有 n 扇防御门后转变得到的攻击力。
由于 atm 水平有限,他的初始攻击力只能为 0 到 m 之间的一个整数(即他的初始攻击力只能在 0,1,…,m 中任选,但在通过防御门之后的攻击力不受 m 的限制)。
为了节省体力,他希望通过选择合适的初始攻击力使得他的攻击能让 drd 受到最大的伤害,请你帮他计算一下,他的一次攻击最多能使 drd 受到多少伤害。
输入格式
第 1 行包含 2 个整数,依次为 n,m,表示 drd 有 n 扇防御门,atm 的初始攻击力为 0 到 m 之间的整数。
接下来 n 行,依次表示每一扇防御门。每行包括一个字符串 op 和一个非负整数 t,两者由一个空格隔开,且 op 在前,t 在后,op 表示该防御门所对应的操作,t 表示对应的参数。
输出格式
输出一个整数,表示 atm 的一次攻击最多使 drd 受到多少伤害。
数据范围
输入样例:
3 10
AND 5
OR 6
XOR 7
输出样例:
1
样例解释
atm可以选择的初始攻击力为 0,1,…,10。
假设初始攻击力为 4,最终攻击力经过了如下计算
4 AND 5 = 4
4 OR 6 = 6
6 XOR 7 = 1
类似的,我们可以计算出初始攻击力为 1,3,5,7,9 时最终攻击力为 0,初始攻击力为 0,2,4,6,8,10 时最终攻击力为 1,因此 atm 的一次攻击最多使 drd 受到的伤害值为 1。
运算解释
在本题中,选手需要先将数字变换为二进制后再进行计算。如果操作的两个数二进制长度不同,则在前补 0 至相同长度。
例如,我们将十进制数 5 与十进制数 3 分别进行 OR、XOR 与 AND 运算,可以得到如下结果:
0101 (十进制 5) 0101 (十进制 5) 0101 (十进制 5)
OR 0011 (十进制 3) XOR 0011 (十进制 3) AND 0011 (十进制 3)
= 0111 (十进制 7) = 0110 (十进制 6) = 0001 (十进制 1)
按位与 、按位或 、按位异或 有个共同的性质:即每次运算只有关该位上的数,而不影响其它位上的数
所以我们可以像最大异或对这题一样,从高位到低位
来确定数的每一位。
如果该位可以填 uu,并且填 uu 之后答案的该位是 11,那么在该位填 uu,否则填 !u!u
那么如何判断该位能填几呢?
由于我们只需要得到填出来的数对所有数运算后的结果,而并不需要输出填出来的数,所以在写代码的时候并不需要真正的把数填出来,只需要确定是否能将答案的该位填成 11 即可。
#include
const int N = 100005;
int n, m; // n, m 即题目描述中 n, m
int ans; // ans 存我们能得到的最大的答案
int t[N]; // t 存输入的 n 个数
short op[N]; // op 存 n 个数对应的操作,1 表示按位或,2 表示按位异或,3 表示与
char str[4]; // str 用于读入操作
bool calc(bool x, int j) // calc 用于计算 x 经过所有数的第 j 位操作后所得到的结果
{
for (int i = 0; i < n; i ++ ) // 从 0 到 n 枚举所有读入的数与其对应操作
if (op[i] == 1) x |= t[i] >> j & 1; // 如果 op[i] 为 1,说明该数所对应的运算为按位或
else if (op[i] == 2) x ^= t[i] >> j & 1; // 如果 op[i] 为 2,说明该数所对应的运算为按位异或
else x &= t[i] >> j & 1; // 如果 op[i] 为 3,说明该数所对应的运算为按位与
return x;
}
int main()
{
scanf("%d %d", &n, &m);
for (int i = 0; i < n; i ++ )
{
scanf("\n%s %d", str, t + i);
if (*str == 'O') op[i] = 1; // 如果该操作为 OR ,那么 op[i] 制为 1
else if (*str == 'X') op[i] = 2; // 如果该操作为 XOR,那么 op[i] 制为 2
else op[i] = 3; // 否则该操作为 AND,那么 op[i] 制为 3
}
for (int i = 29; ~i; i -- ) // 因为本题中 m 最大是 10 ^ 9,log2(10 ^ 9) = 3log2(10 ^ 3) < 3 * 10 = 30,所以每次 i 从 29 往后枚举就可以了
if (1 << i <= m) // 如果填 1 后小于等于 m,要看填完后对答案的影响来填
{
bool x = calc(0, i), y = calc(1, i); // 先分别处理出该位填 0 的结果和该位填 1 的结果
if (x >= y) ans|= x << i; // 如果该位填 1 并不比该位填 0 更优,那么为了让剩下能填的数更大,在该位填 0
else ans |= y << i, m -= 1 << i; // 否则在该位填 1,填完后让 m 减去该位填 1 的结果,这样在后面填数的时候只用考虑是否大于 m 就可以了
}
else ans |= calc(0, i) << i; // 否则该位只能填 0,
printf("%d\n", ans);
return 0;
}
在二进制数中, 高位取1所产生的数比所有低位都取1形成的数都大, 即 1<< n > (1<