在人工智能技术的快速发展进程下,现在很多小区或办公楼已经用上了人脸识别智能门禁系统。如今很多地方出入写字楼不用刷卡识别,直接刷脸就可以进入大楼。新型的生物识别代替了传统的识别方式
人脸识别任务,分为二部分,人脸特征提取与人脸验证
人脸特征提取需要基于人脸的图像特征来判断,这个特征属于那个人,那如何提取人脸图像特征,目前有二种方式:
基于人脸关键点的特征
下图有一个详细的基于人脸关键点做的人脸识别算法流程
关键点检测方法总体上可以分成两个类型:
这两个方法,都是一种手段或者是途径,解决的问题就是要找出这个点在图像当中的位置与关系,大白话说就是找出一个像素点位置,并且它周围上下文(周围像素)有一定的组合关系
人脸验证即当前照片中的人脸是否为数据库中已存在的某个人,一般存在两种方式:
第一种方式缺点较多,如:当模型训练完成后无法随时加入新的人,而且每个数据库中的人需要采集较多的人脸数据,并且用图像分类的准确度不高
第二种方式一般用孪生网络实现(Siamese Network)实现,大致结构如下:
原理:
人脸识别系统利用分布式集群技术,基于神经网络深度学习算法和海量数据存储大数据计算技术,实现视频监控图像,人脸识别图像
前端采取视频流或图片流方式进行视频图像传输,提供现场环境人脸图像,并形成人脸抓拍库。
人脸识别服务主要二个模式,分别为验证模式和搜索模式两种比较模式。
其中第二种 1 : n 1:n 1:n的人脸数据库分为三种业务数据库:
N : N N:N N:N场景较为少,实际上相当于同时进行多个1:N识别,用于“证明谁是谁”。
人脸数据建模和检索可以对库中登记的人脸图像数据进行建模以提取脸部的特征,并且可以将生成的脸部模板保存在数据库中。在人脸搜索中,对指定的人脸图像进行建模,然后与数据库中的所有者的模板进行比较,最后根据比较出的相似度值列出相似度的人员名单。
以前是静态人脸识别是通过指定的区域或范围之内进行识别,也就是说识别对距离、位置的要求会比较高。静态人脸识别的特点在于用户容量小,而且安全性能不高,有时一张照片也能通过识别验证。现在推出的动态人脸识别门禁,系统可以识别出对方是真人还是照片。
在银行的app,常见的应用,系统通过提示用户完成一些动作来判断用户是否为活体(比如眨眼,张嘴,摇头)。
图像质量直接影响识别效果。图像质量检测功能可以对照片进行图像质量评估,并给出相应的推荐值用来辅助识别。
未来越来越多的城市将变得智能化,以技术为导向的产品将使公民的生活更加舒适,提高生活质量,节约自然资源。