• 智能问答(Question Answering)的主要研究方向


    非事实类问题

    大多数研究关注于事实类问题,而非事实类问题的研究相对不足,包括数学类的问题、判断类的问题等。

    [EMNLP 2019] NumNet: Machine Reading Comprehension with Numerical Reasoning 数学类问题

    [NAACL19] MathQA: Towards Interpretable Math Word Problem Solving with Operation-Based Formalisms

    [NAACL19] BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions

    多跳推理

    多跳(multi-hop)在最近的顶会上关注度非常高,目前实现这一机制的方法也比较复杂。

    [EMNLP 2019] What’s Missing: A Knowledge Gap Guided Approach for Multi-hop Question Answering

    [EMNLP 2019] Self-Assembling Modular Networks for Interpretable Multi-Hop Reasoning

    [EMNLP 2019] Avoiding Reasoning Shortcuts: Adversarial Evaluation, Training, and Model Development for Multi-Hop QA

    [ACL 2019] Multi-Hop Paragraph Retrieval for Open-Domain Question Answering

    [ACL 2019] Dynamically Fused Graph Network for Multi-hop Reasoning

    [ACL 2019] Explore, Propose, and Assemble: An Interpretable Model for Multi-Hop Reading Comprehension

    [ACL 2019] Multi-hop Reading Comprehension through Question Decomposition and Rescoring

    [ACL 2019] Compositional Questions Do Not Necessitate Multi-hop Reasoning

    [ACL 2019] Answering while Summarizing: Multi-task Learning for Multi-hop QA with Evidence Extraction

    [ACL 2019] Cognitive Graph for Multi-Hop Reading Comprehension at Scale

    [ACL 2019] Understanding Dataset Design Choices for Multi-hop Reasoning

    [NAACL 2019] Repurposing Entailment for Multi-Hop Question Answering Tasks

    [NAACL 2019] BAG: Bi-directional Attention Entity Graph Convolutional Network for Multi-hop Reasoning Question Answering

    [ACL 2019] Exploiting Explicit Paths for Multi-hop Reading Comprehension

    [ACL 2019] Multi-hop reading comprehension across multiple documents by reasoning over heterogeneous graphs

    多语言/跨语言的问答

    包括英法德等主流语言之间的研究,也包括特定于使用人数较少的语言的研究。

    [EMNLP 2019] Cross-Lingual Machine Reading Comprehension

    [EMNLP 2019] BiPaR: A Bilingual Parallel Dataset for Multilingual and Cross-lingual Reading Comprehension Novels

    [ACL 2019] XQA: A Cross-lingual Open-domain Question Answering Dataset

    知识库问答和基于文本的问答的结合

    前者通常是限定域的,知识容量有限,结构化信息比较好查询;后者通常是开放域的,信息量很大,但是提取知识比较困难。

    [EMNLP 2019] Language Models as Knowledge Bases? 探索语言模型作为知识来源的可能性
    [ACL 2019] Interpretable Question Answering on Knowledge Bases and Text

    [ACL 2019] Enhancing Pre-Trained Language Representations with Rich Knowledge for Machine Reading Comprehension

    [EMNLP 2019] Incorporating External Knowledge into Machine Reading for Generative Question Answering

    长文本/多段落

    MRC 的研究在向多段落/长文本扩展。

    [EMNLP 2019] BookQA: Stories of Challenges and Opportunities

    [ACL 2019] Simple and Effective Curriculum Pointer-Generator Networks for Reading Comprehension over Long Narratives

    [ACL 2019] ELI5: Long Form Question Answering

    [ACL 2018] Multi-Passage Machine Reading Comprehension with Cross-Passage Answer Verification

    [ACL 2019] Token-level Dynamic Self-Attention Network for Multi-Passage Reading Comprehension

    [EMNLP 2019] Multi-passage BERT: A Globally Normalized BERT Model for Open-domain Question Answering

    [ACL 2019] Retrieve, Read, Rerank: Towards End-to-End Multi-Document Reading Comprehension

    [ACL 2019] Multi-hop reading comprehension across multiple documents by reasoning over heterogeneous graphs

    [EMNLP19] PullNet: Open Domain Question Answering with Iterative Retrieval on Knowledge Bases and Text

    QA 系统的可解释性

    比如可以将对答案的解释也作为训练数据的一部分,让模型学会解释。

    [NAACL 2019] Enhancing Key-Value Memory Neural Networks for Knowledge Based Question Answering

    [EMNLP 2017] QUINT: Interpretable Question Answering over Knowledge Bases

    [ACL 2019] Interpretable Question Answering on Knowledge Bases and Text

    [ACL 2019] Explore, Propose, and Assemble: An Interpretable Model for Multi-Hop Reading Comprehension

    不可回答的问题

    这个问题包括无法回答的问题和合理答案的判别两个任务。

    [AAAI 2019] Read + Verify: Machine Reading Comprehension with Unanswerable Questions

    [ACL 2019] Learning to Ask Unanswerable Questions for Machine Reading Comprehension

    数据集的构建

    更实用、智能、强大的 QA 系统需要更多优质的数据集来推动。

    [EMNLP 2019] BiPaR: A Bilingual Parallel Dataset for Multilingual and Cross-lingual Reading Comprehension on Novels 多语言与跨语言的小说阅读理解

    [EMNLP 2019] GeoSQA: A Benchmark for Scenario-based Question Answering in the Geography Domain at High School Level 高中地理场景下的问答基准测试

    [EMNLP 2019] Quoref: A Reading Comprehension Dataset with Questions Requiring Coreferential Reasoning 共指解析问题

    [IJCAI 2019] AmazonQA: A Review-Based Question Answering Task 基于评论的问答

    [EMNLP 2019] BiPaR: A Bilingual Parallel Dataset for Multilingual and Cross-lingual Reading Comprehension Novels 多语言和跨语言阅读理解小说的双语并行数据集

    [ACL 2019] XQA: A Cross-lingual Open-domain Question Answering Dataset 跨语言开放域问答数据集

    [ACL 2019] WEETQA: A Social Media Focused Question Answering Dataset 社交媒体问答数据集

    [EMNLP 2019] A Span-Extraction Dataset for Chinese Machine Reading Comprehension 中文阅读跨度提取数据集




    参考资料:
    智能问答(Question Answering)的主要研究方向有哪些?
    Question Answering论文(问答系统&阅读理解)
    QA问答系统(Question Answering)
    (含源码)「自然语言处理(NLP)」Question Answering(QA)论文整理(一)
    揭开知识库问答KB-QA的面纱1·简介篇
    美团知识图谱问答技术实践与探索

  • 相关阅读:
    springCloud集成nacos启动时报错排查
    可在电脑桌面显示每日工作计划表的工具用哪个?
    Oracle修改表空间文件位置
    Java中Date实现比较大小
    PDU是什么?
    GoLang接口
    【被面试官吊打系列】啥,你没说面试要考智力题呀 (上) ?
    自然语言处理任务的开发流程
    MySQL 学习记录 2
    什么是ProxySQL?
  • 原文地址:https://blog.csdn.net/u013250861/article/details/125883206