上一话
3D视觉——2.人体姿态估计(Pose Estimation)入门——OpenPose含安装、编译、使用(单帧、实时视频)
- import cv2
- import time
- import numpy as np
- from tqdm import tqdm
- import mediapipe as mp
-
- mp_pose = mp.solutions.pose
- pose = mp_pose.Pose(static_image_mode=True,
- model_complexity=2,
- smooth_landmarks=True,
- min_detection_confidence=0.5,
- min_tracking_confidence=0.5)
- drawing = mp.solutions.drawing_utils
-
-
- def process_frame(img):
- height, width, channels = img.shape
- start = time.time()
- results = pose.process(img)
- if results.pose_landmarks:
- drawing.draw_landmarks(img, results.pose_landmarks, mp_pose.POSE_CONNECTIONS)
- coords = np.array(results.pose_landmarks.landmark)
- for index, each in enumerate(coords):
- cx = int(each.x * width)
- cy = int(each.y * height)
- cz = each.z
- radius = 5
- # nose
- if index == 0:
- img = cv2.circle(img, (cx, cy), radius, (0, 0, 255), -1)
- # shoulder
- elif index in [11, 12]:
- img = cv2.circle(img, (cx, cy), radius, (193, 182, 255), -1)
- # hip joint
- elif index in [23, 24]:
- img = cv2.circle(img, (cx, cy), radius, (16, 144, 247), -1)
- # elbow
- elif index in [13, 14]:
- img = cv2.circle(img, (cx, cy), radius, (1, 240, 255), -1)
- # lap
- elif index in [25, 26]:
- img = cv2.circle(img, (cx, cy), radius, (140, 47, 240), -1)
- # wrist and ankle
- elif index in [15, 16, 27, 28]:
- img = cv2.circle(img, (cx, cy), radius, (223, 155, 60), -1)
- # left hand
- elif index in [17, 19, 21]:
- img = cv2.circle(img, (cx, cy), radius, (16, 144, 247), -1)
- # right hand
- elif index in [18, 20, 22]:
- img = cv2.circle(img, (cx, cy), radius, (1, 240, 255), -1)
- # left feet
- elif index in [27, 29, 31]:
- img = cv2.circle(img, (cx, cy), radius, (140, 47, 240), -1)
- # right feet
- elif index in [28, 30, 32]:
- img = cv2.circle(img, (cx, cy), radius, (223, 155, 6), -1)
- # mouth
- elif index in [9, 10]:
- img = cv2.circle(img, (cx, cy), radius, (16, 144, 247), -1)
- # face and eye
- elif index in [1, 2, 3, 4, 5, 6, 7, 8]:
- img = cv2.circle(img, (cx, cy), radius, (1, 240, 255), -1)
- # other
- else:
- img = cv2.circle(img, (cx, cy), radius, (140, 47, 240), -1)
- else:
- fail = "fail detection"
- img = cv2.putText(img, fail, (25, 100), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 3)
-
- FPS = 1 / (time.time() - start)
- img = cv2.putText(img, "FPS" + str(int(FPS)), (25, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 3)
- return img
-
-
- def out_video(input):
- file = input.split("/")[-1]
- output = "out-optim-" + file
- print("It will start processing video: {}".format(input))
- cap = cv2.VideoCapture(input)
- frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
- frame_size = (cap.get(cv2.CAP_PROP_FRAME_WIDTH), cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
- # create VideoWriter,VideoWriter_fourcc is video decode
- fourcc = cv2.VideoWriter_fourcc(*'mp4v')
- fps = cap.get(cv2.CAP_PROP_FPS)
- out = cv2.VideoWriter(output, fourcc, fps, (int(frame_size[0]), int(frame_size[1])))
- # the progress bar
- with tqdm(range(frame_count)) as pbar:
-
- while cap.isOpened():
- success, frame = cap.read()
- if not success:
- break
- try:
- frame = process_frame(frame)
- out.write(frame)
- pbar.update(1)
- except:
- print("ERROR")
- pass
- pbar.close()
- cv2.destroyAllWindows()
- out.release()
- cap.release()
- print("{} finished!".format(output))
-
-
- if __name__ == '__main__':
- video_dirs = "1.mp4"
- out_video(video_dirs)
MediaPipe人体姿态估计效果展示
demo_video.py
- import copy
- import math
- import time
-
- import numpy as np
- import cv2
- from glob import glob
- import os
- import argparse
- import json
-
- # video file processing setup
- # from: https://stackoverflow.com/a/61927951
- import argparse
- import subprocess
- import sys
- from pathlib import Path
- from typing import NamedTuple
-
-
- class FFProbeResult(NamedTuple):
- return_code: int
- json: str
- error: str
-
-
- def ffprobe(file_path) -> FFProbeResult:
- command_array = ["ffprobe",
- "-v", "quiet",
- "-print_format", "json",
- "-show_format",
- "-show_streams",
- file_path]
- result = subprocess.run(command_array, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True)
- return FFProbeResult(return_code=result.returncode,
- json=result.stdout,
- error=result.stderr)
-
-
- # openpose setup
- from src import model
- from src import util
- from src.body import Body
- from src.hand import Hand
-
- body_estimation = Body('model/body_pose_model.pth')
- hand_estimation = Hand('model/hand_pose_model.pth')
-
-
- def process_frame(frame, body=True, hands=True):
- start = time.time()
- canvas = copy.deepcopy(frame)
- if body:
- candidate, subset = body_estimation(frame)
- canvas = util.draw_bodypose(canvas, candidate, subset)
- if hands:
- hands_list = util.handDetect(candidate, subset, frame)
- all_hand_peaks = []
- for x, y, w, is_left in hands_list:
- peaks = hand_estimation(frame[y:y + w, x:x + w, :])
- peaks[:, 0] = np.where(peaks[:, 0] == 0, peaks[:, 0], peaks[:, 0] + x)
- peaks[:, 1] = np.where(peaks[:, 1] == 0, peaks[:, 1], peaks[:, 1] + y)
- all_hand_peaks.append(peaks)
- canvas = util.draw_handpose(canvas, all_hand_peaks)
- FPS = math.ceil(1 / (time.time() - start))
- canvas = cv2.putText(canvas, "FPS" + str(int(FPS)), (25, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 3)
- return canvas
-
-
- # writing video with ffmpeg because cv2 writer failed
- # https://stackoverflow.com/questions/61036822/opencv-videowriter-produces-cant-find-starting-number-error
- import ffmpeg
-
- # open specified video
- parser = argparse.ArgumentParser(
- description="Process a video annotating poses detected.")
- parser.add_argument('--file', type=str, default='video/1.avi', help='Video file location to process.')
- parser.add_argument('--no_hands', action='store_true', help='No hand pose')
- parser.add_argument('--no_body', action='store_true', help='No body pose')
- args = parser.parse_args()
- video_file = args.file
- cap = cv2.VideoCapture(video_file)
-
- # get video file info
- ffprobe_result = ffprobe(args.file)
- info = json.loads(ffprobe_result.json)
- videoinfo = [i for i in info["streams"] if i["codec_type"] == "video"][0]
- input_fps = videoinfo["avg_frame_rate"]
- # input_fps = float(input_fps[0])/float(input_fps[1])
- input_pix_fmt = videoinfo["pix_fmt"]
- input_vcodec = videoinfo["codec_name"]
-
- # define a writer object to write to a movidified file
- postfix = info["format"]["format_name"].split(",")[0]
- output_file = ".".join(video_file.split(".")[:-1]) + ".processed." + postfix
-
-
- class Writer():
- def __init__(self, output_file, input_fps, input_framesize, input_pix_fmt,
- input_vcodec):
- if os.path.exists(output_file):
- os.remove(output_file)
- self.ff_proc = (
- ffmpeg
- .input('pipe:',
- format='rawvideo',
- pix_fmt="bgr24",
- s='%sx%s' % (input_framesize[1], input_framesize[0]),
- r=input_fps)
- .output(output_file, pix_fmt=input_pix_fmt, vcodec=input_vcodec)
- .overwrite_output()
- .run_async(pipe_stdin=True)
- )
-
- def __call__(self, frame):
- self.ff_proc.stdin.write(frame.tobytes())
-
- def close(self):
- self.ff_proc.stdin.close()
- self.ff_proc.wait()
-
-
- writer = None
- iteration = 0
- while (cap.isOpened()):
- ret, frame = cap.read()
- if frame is None:
- break
-
- posed_frame = process_frame(frame, body=not args.no_body,
- hands=not args.no_hands)
-
- if writer is None:
- input_framesize = posed_frame.shape[:2]
- writer = Writer(output_file, input_fps, input_framesize, input_pix_fmt,
- input_vcodec)
-
- # cv2.imshow('frame', posed_frame)
-
- # write the frame
- writer(posed_frame)
- iteration += 1
- print("iteration: {}".format(iteration))
-
- if cv2.waitKey(1) & 0xFF == ord('q'):
- break
-
- cap.release()
- writer.close()
- cv2.destroyAllWindows()
src/util.py
- import numpy as np
- import math
- import cv2
- import matplotlib
- from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
- from matplotlib.figure import Figure
- import numpy as np
- import matplotlib.pyplot as plt
- import cv2
-
-
- def padRightDownCorner(img, stride, padValue):
- h = img.shape[0]
- w = img.shape[1]
-
- pad = 4 * [None]
- pad[0] = 0 # up
- pad[1] = 0 # left
- pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
- pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right
-
- img_padded = img
- pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1))
- img_padded = np.concatenate((pad_up, img_padded), axis=0)
- pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1))
- img_padded = np.concatenate((pad_left, img_padded), axis=1)
- pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1))
- img_padded = np.concatenate((img_padded, pad_down), axis=0)
- pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1))
- img_padded = np.concatenate((img_padded, pad_right), axis=1)
-
- return img_padded, pad
-
- # transfer caffe model to pytorch which will match the layer name
- def transfer(model, model_weights):
- transfered_model_weights = {}
- for weights_name in model.state_dict().keys():
- transfered_model_weights[weights_name] = model_weights['.'.join(weights_name.split('.')[1:])]
- return transfered_model_weights
-
- # draw the body keypoint and lims
- def draw_bodypose(canvas, candidate, subset):
- stickwidth = 4
- limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
- [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
- [1, 16], [16, 18], [3, 17], [6, 18]]
-
- colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
- [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
- [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
- for i in range(18):
- for n in range(len(subset)):
- index = int(subset[n][i])
- if index == -1:
- continue
- x, y = candidate[index][0:2]
- cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1)
- for i in range(17):
- for n in range(len(subset)):
- index = subset[n][np.array(limbSeq[i]) - 1]
- if -1 in index:
- continue
- cur_canvas = canvas.copy()
- Y = candidate[index.astype(int), 0]
- X = candidate[index.astype(int), 1]
- mX = np.mean(X)
- mY = np.mean(Y)
- length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
- angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
- polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
- cv2.fillConvexPoly(cur_canvas, polygon, colors[i])
- canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
- # plt.imsave("preview.jpg", canvas[:, :, [2, 1, 0]])
- # plt.imshow(canvas[:, :, [2, 1, 0]])
- return canvas
-
- def draw_handpose(canvas, all_hand_peaks, show_number=False):
- edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
- [10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]
- fig = Figure(figsize=plt.figaspect(canvas))
-
- fig.subplots_adjust(0, 0, 1, 1)
- fig.subplots_adjust(bottom=0, top=1, left=0, right=1)
- bg = FigureCanvas(fig)
- ax = fig.subplots()
- ax.axis('off')
- ax.imshow(canvas)
-
- width, height = ax.figure.get_size_inches() * ax.figure.get_dpi()
-
- for peaks in all_hand_peaks:
- for ie, e in enumerate(edges):
- if np.sum(np.all(peaks[e], axis=1)==0)==0:
- x1, y1 = peaks[e[0]]
- x2, y2 = peaks[e[1]]
- ax.plot([x1, x2], [y1, y2], color=matplotlib.colors.hsv_to_rgb([ie/float(len(edges)), 1.0, 1.0]))
-
- for i, keyponit in enumerate(peaks):
- x, y = keyponit
- ax.plot(x, y, 'r.')
- if show_number:
- ax.text(x, y, str(i))
- bg.draw()
- canvas = np.fromstring(bg.tostring_rgb(), dtype='uint8').reshape(int(height), int(width), 3)
- return canvas
-
- # image drawed by opencv is not good.
- def draw_handpose_by_opencv(canvas, peaks, show_number=False):
- edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
- [10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]
- # cv2.rectangle(canvas, (x, y), (x+w, y+w), (0, 255, 0), 2, lineType=cv2.LINE_AA)
- # cv2.putText(canvas, 'left' if is_left else 'right', (x, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
- for ie, e in enumerate(edges):
- if np.sum(np.all(peaks[e], axis=1)==0)==0:
- x1, y1 = peaks[e[0]]
- x2, y2 = peaks[e[1]]
- cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie/float(len(edges)), 1.0, 1.0])*255, thickness=2)
-
- for i, keyponit in enumerate(peaks):
- x, y = keyponit
- cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1)
- if show_number:
- cv2.putText(canvas, str(i), (x, y), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 0, 0), lineType=cv2.LINE_AA)
- return canvas
-
- # detect hand according to body pose keypoints
- # please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp
- def handDetect(candidate, subset, oriImg):
- # right hand: wrist 4, elbow 3, shoulder 2
- # left hand: wrist 7, elbow 6, shoulder 5
- ratioWristElbow = 0.33
- detect_result = []
- image_height, image_width = oriImg.shape[0:2]
- for person in subset.astype(int):
- # if any of three not detected
- has_left = np.sum(person[[5, 6, 7]] == -1) == 0
- has_right = np.sum(person[[2, 3, 4]] == -1) == 0
- if not (has_left or has_right):
- continue
- hands = []
- #left hand
- if has_left:
- left_shoulder_index, left_elbow_index, left_wrist_index = person[[5, 6, 7]]
- x1, y1 = candidate[left_shoulder_index][:2]
- x2, y2 = candidate[left_elbow_index][:2]
- x3, y3 = candidate[left_wrist_index][:2]
- hands.append([x1, y1, x2, y2, x3, y3, True])
- # right hand
- if has_right:
- right_shoulder_index, right_elbow_index, right_wrist_index = person[[2, 3, 4]]
- x1, y1 = candidate[right_shoulder_index][:2]
- x2, y2 = candidate[right_elbow_index][:2]
- x3, y3 = candidate[right_wrist_index][:2]
- hands.append([x1, y1, x2, y2, x3, y3, False])
-
- for x1, y1, x2, y2, x3, y3, is_left in hands:
- # pos_hand = pos_wrist + ratio * (pos_wrist - pos_elbox) = (1 + ratio) * pos_wrist - ratio * pos_elbox
- # handRectangle.x = posePtr[wrist*3] + ratioWristElbow * (posePtr[wrist*3] - posePtr[elbow*3]);
- # handRectangle.y = posePtr[wrist*3+1] + ratioWristElbow * (posePtr[wrist*3+1] - posePtr[elbow*3+1]);
- # const auto distanceWristElbow = getDistance(poseKeypoints, person, wrist, elbow);
- # const auto distanceElbowShoulder = getDistance(poseKeypoints, person, elbow, shoulder);
- # handRectangle.width = 1.5f * fastMax(distanceWristElbow, 0.9f * distanceElbowShoulder);
- x = x3 + ratioWristElbow * (x3 - x2)
- y = y3 + ratioWristElbow * (y3 - y2)
- distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2)
- distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
- width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder)
- # x-y refers to the center --> offset to topLeft point
- # handRectangle.x -= handRectangle.width / 2.f;
- # handRectangle.y -= handRectangle.height / 2.f;
- x -= width / 2
- y -= width / 2 # width = height
- # overflow the image
- if x < 0: x = 0
- if y < 0: y = 0
- width1 = width
- width2 = width
- if x + width > image_width: width1 = image_width - x
- if y + width > image_height: width2 = image_height - y
- width = min(width1, width2)
- # the max hand box value is 20 pixels
- if width >= 20:
- detect_result.append([int(x), int(y), int(width), is_left])
-
- '''
- return value: [[x, y, w, True if left hand else False]].
- width=height since the network require squared input.
- x, y is the coordinate of top left
- '''
- return detect_result
-
- # get max index of 2d array
- def npmax(array):
- arrayindex = array.argmax(1)
- arrayvalue = array.max(1)
- i = arrayvalue.argmax()
- j = arrayindex[i]
- return i, j
src/hand.py
- import cv2
- import json
- import numpy as np
- import math
- import time
- from scipy.ndimage.filters import gaussian_filter
- import matplotlib.pyplot as plt
- import matplotlib
- import torch
- from skimage.measure import label
-
- from src.model import handpose_model
- from src import util
-
- class Hand(object):
- def __init__(self, model_path):
- self.model = handpose_model()
- if torch.cuda.is_available():
- self.model = self.model.cuda()
- model_dict = util.transfer(self.model, torch.load(model_path))
- self.model.load_state_dict(model_dict)
- self.model.eval()
-
- def __call__(self, oriImg):
- scale_search = [0.5, 1.0, 1.5, 2.0]
- # scale_search = [0.5]
- boxsize = 368
- stride = 8
- padValue = 128
- thre = 0.05
- multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search]
- heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 22))
- # paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
-
- for m in range(len(multiplier)):
- scale = multiplier[m]
- imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
- imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue)
- im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5
- im = np.ascontiguousarray(im)
-
- data = torch.from_numpy(im).float()
- if torch.cuda.is_available():
- data = data.cuda()
- # data = data.permute([2, 0, 1]).unsqueeze(0).float()
- with torch.no_grad():
- output = self.model(data).cpu().numpy()
- # output = self.model(data).numpy()q
-
- # extract outputs, resize, and remove padding
- heatmap = np.transpose(np.squeeze(output), (1, 2, 0)) # output 1 is heatmaps
- heatmap = cv2.resize(heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
- heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
- heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
-
- heatmap_avg += heatmap / len(multiplier)
-
- all_peaks = []
- for part in range(21):
- map_ori = heatmap_avg[:, :, part]
- one_heatmap = gaussian_filter(map_ori, sigma=3)
- binary = np.ascontiguousarray(one_heatmap > thre, dtype=np.uint8)
- # 全部小于阈值
- if np.sum(binary) == 0:
- all_peaks.append([0, 0])
- continue
- label_img, label_numbers = label(binary, return_num=True, connectivity=binary.ndim)
- max_index = np.argmax([np.sum(map_ori[label_img == i]) for i in range(1, label_numbers + 1)]) + 1
- label_img[label_img != max_index] = 0
- map_ori[label_img == 0] = 0
-
- y, x = util.npmax(map_ori)
- all_peaks.append([x, y])
- return np.array(all_peaks)
-
- if __name__ == "__main__":
- hand_estimation = Hand('../model/hand_pose_model.pth')
-
- # test_image = '../images/hand.jpg'
- test_image = '../images/hand.jpg'
- oriImg = cv2.imread(test_image) # B,G,R order
- peaks = hand_estimation(oriImg)
- canvas = util.draw_handpose(oriImg, peaks, True)
- cv2.imshow('', canvas)
- cv2.waitKey(0)
src/body.py
- import cv2
- import numpy as np
- import math
- import time
- from scipy.ndimage.filters import gaussian_filter
- import matplotlib.pyplot as plt
- import matplotlib
- import torch
- from torchvision import transforms
-
- from src import util
- from src.model import bodypose_model
-
- class Body(object):
- def __init__(self, model_path):
- self.model = bodypose_model()
- if torch.cuda.is_available():
- self.model = self.model.cuda()
- model_dict = util.transfer(self.model, torch.load(model_path))
- self.model.load_state_dict(model_dict)
- self.model.eval()
-
- def __call__(self, oriImg):
- # scale_search = [0.5, 1.0, 1.5, 2.0]
- scale_search = [0.5]
- boxsize = 368
- stride = 8
- padValue = 128
- thre1 = 0.1
- thre2 = 0.05
- multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search]
- heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19))
- paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
-
- for m in range(len(multiplier)):
- scale = multiplier[m]
- imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
- imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue)
- im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5
- im = np.ascontiguousarray(im)
-
- data = torch.from_numpy(im).float()
- if torch.cuda.is_available():
- data = data.cuda()
- # data = data.permute([2, 0, 1]).unsqueeze(0).float()
- with torch.no_grad():
- Mconv7_stage6_L1, Mconv7_stage6_L2 = self.model(data)
- Mconv7_stage6_L1 = Mconv7_stage6_L1.cpu().numpy()
- Mconv7_stage6_L2 = Mconv7_stage6_L2.cpu().numpy()
-
- # extract outputs, resize, and remove padding
- # heatmap = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[1]].data), (1, 2, 0)) # output 1 is heatmaps
- heatmap = np.transpose(np.squeeze(Mconv7_stage6_L2), (1, 2, 0)) # output 1 is heatmaps
- heatmap = cv2.resize(heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
- heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
- heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
-
- # paf = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[0]].data), (1, 2, 0)) # output 0 is PAFs
- paf = np.transpose(np.squeeze(Mconv7_stage6_L1), (1, 2, 0)) # output 0 is PAFs
- paf = cv2.resize(paf, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
- paf = paf[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
- paf = cv2.resize(paf, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
-
- heatmap_avg += heatmap_avg + heatmap / len(multiplier)
- paf_avg += + paf / len(multiplier)
-
- all_peaks = []
- peak_counter = 0
-
- for part in range(18):
- map_ori = heatmap_avg[:, :, part]
- one_heatmap = gaussian_filter(map_ori, sigma=3)
-
- map_left = np.zeros(one_heatmap.shape)
- map_left[1:, :] = one_heatmap[:-1, :]
- map_right = np.zeros(one_heatmap.shape)
- map_right[:-1, :] = one_heatmap[1:, :]
- map_up = np.zeros(one_heatmap.shape)
- map_up[:, 1:] = one_heatmap[:, :-1]
- map_down = np.zeros(one_heatmap.shape)
- map_down[:, :-1] = one_heatmap[:, 1:]
-
- peaks_binary = np.logical_and.reduce(
- (one_heatmap >= map_left, one_heatmap >= map_right, one_heatmap >= map_up, one_heatmap >= map_down, one_heatmap > thre1))
- peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0])) # note reverse
- peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks]
- peak_id = range(peak_counter, peak_counter + len(peaks))
- peaks_with_score_and_id = [peaks_with_score[i] + (peak_id[i],) for i in range(len(peak_id))]
-
- all_peaks.append(peaks_with_score_and_id)
- peak_counter += len(peaks)
-
- # find connection in the specified sequence, center 29 is in the position 15
- limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
- [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
- [1, 16], [16, 18], [3, 17], [6, 18]]
- # the middle joints heatmap correpondence
- mapIdx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], [19, 20], [21, 22], \
- [23, 24], [25, 26], [27, 28], [29, 30], [47, 48], [49, 50], [53, 54], [51, 52], \
- [55, 56], [37, 38], [45, 46]]
-
- connection_all = []
- special_k = []
- mid_num = 10
-
- for k in range(len(mapIdx)):
- score_mid = paf_avg[:, :, [x - 19 for x in mapIdx[k]]]
- candA = all_peaks[limbSeq[k][0] - 1]
- candB = all_peaks[limbSeq[k][1] - 1]
- nA = len(candA)
- nB = len(candB)
- indexA, indexB = limbSeq[k]
- if (nA != 0 and nB != 0):
- connection_candidate = []
- for i in range(nA):
- for j in range(nB):
- vec = np.subtract(candB[j][:2], candA[i][:2])
- norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1])
- norm = max(0.001, norm)
- vec = np.divide(vec, norm)
-
- startend = list(zip(np.linspace(candA[i][0], candB[j][0], num=mid_num), \
- np.linspace(candA[i][1], candB[j][1], num=mid_num)))
-
- vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] \
- for I in range(len(startend))])
- vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] \
- for I in range(len(startend))])
-
- score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1])
- score_with_dist_prior = sum(score_midpts) / len(score_midpts) + min(
- 0.5 * oriImg.shape[0] / norm - 1, 0)
- criterion1 = len(np.nonzero(score_midpts > thre2)[0]) > 0.8 * len(score_midpts)
- criterion2 = score_with_dist_prior > 0
- if criterion1 and criterion2:
- connection_candidate.append(
- [i, j, score_with_dist_prior, score_with_dist_prior + candA[i][2] + candB[j][2]])
-
- connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True)
- connection = np.zeros((0, 5))
- for c in range(len(connection_candidate)):
- i, j, s = connection_candidate[c][0:3]
- if (i not in connection[:, 3] and j not in connection[:, 4]):
- connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]])
- if (len(connection) >= min(nA, nB)):
- break
-
- connection_all.append(connection)
- else:
- special_k.append(k)
- connection_all.append([])
-
- # last number in each row is the total parts number of that person
- # the second last number in each row is the score of the overall configuration
- subset = -1 * np.ones((0, 20))
- candidate = np.array([item for sublist in all_peaks for item in sublist])
-
- for k in range(len(mapIdx)):
- if k not in special_k:
- partAs = connection_all[k][:, 0]
- partBs = connection_all[k][:, 1]
- indexA, indexB = np.array(limbSeq[k]) - 1
-
- for i in range(len(connection_all[k])): # = 1:size(temp,1)
- found = 0
- subset_idx = [-1, -1]
- for j in range(len(subset)): # 1:size(subset,1):
- if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]:
- subset_idx[found] = j
- found += 1
-
- if found == 1:
- j = subset_idx[0]
- if subset[j][indexB] != partBs[i]:
- subset[j][indexB] = partBs[i]
- subset[j][-1] += 1
- subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
- elif found == 2: # if found 2 and disjoint, merge them
- j1, j2 = subset_idx
- membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2]
- if len(np.nonzero(membership == 2)[0]) == 0: # merge
- subset[j1][:-2] += (subset[j2][:-2] + 1)
- subset[j1][-2:] += subset[j2][-2:]
- subset[j1][-2] += connection_all[k][i][2]
- subset = np.delete(subset, j2, 0)
- else: # as like found == 1
- subset[j1][indexB] = partBs[i]
- subset[j1][-1] += 1
- subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
-
- # if find no partA in the subset, create a new subset
- elif not found and k < 17:
- row = -1 * np.ones(20)
- row[indexA] = partAs[i]
- row[indexB] = partBs[i]
- row[-1] = 2
- row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2]
- subset = np.vstack([subset, row])
- # delete some rows of subset which has few parts occur
- deleteIdx = []
- for i in range(len(subset)):
- if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4:
- deleteIdx.append(i)
- subset = np.delete(subset, deleteIdx, axis=0)
-
- # subset: n*20 array, 0-17 is the index in candidate, 18 is the total score, 19 is the total parts
- # candidate: x, y, score, id
- return candidate, subset
-
- if __name__ == "__main__":
- body_estimation = Body('../model/body_pose_model.pth')
-
- test_image = '../images/ski.jpg'
- oriImg = cv2.imread(test_image) # B,G,R order
- candidate, subset = body_estimation(oriImg)
- canvas = util.draw_bodypose(oriImg, candidate, subset)
- plt.imshow(canvas[:, :, [2, 1, 0]])
- plt.show()
OpenPose效果展示
需要安装OpenPose,请看我的另一篇博客:
3D视觉——2.人体姿态估计(Pose Estimation)入门——OpenPose含安装、编译、使用(单帧、实时视频)
- import os
- import time
-
- import cv2
- import sys
- from tqdm import tqdm
- from sys import platform
-
- BASE_DIR = os.path.dirname(os.path.realpath(__file__))
- if platform == 'win32':
- lib_dir = 'Release'
- bin_dir = 'bin'
- x64_dir = 'x64'
- lib_path = os.path.join(BASE_DIR, lib_dir)
- bin_path = os.path.join(BASE_DIR, bin_dir)
- x64_path = os.path.join(BASE_DIR, x64_dir)
- sys.path.append(lib_path)
- os.environ['PATH'] += ';' + bin_path + ';' + x64_path + '\Release;'
- try:
- import pyopenpose as op
-
- print("successful, import pyopenpose!")
- except ImportError as e:
- print("fail to import pyopenpose!")
- raise e
- else:
- print(f"当前电脑环境:\n{platform}\n")
- sys.exit(-1)
-
-
- def out_video(input):
- datum = op.Datum()
- opWrapper = op.WrapperPython()
- params = dict()
- params["model_folder"] = BASE_DIR + "\models"
- params["model_pose"] = "BODY_25"
- params["number_people_max"] = 3
- params["disable_blending"] = False
- opWrapper.configure(params)
- opWrapper.start()
- file = input.split("/")[-1]
- output = "video/out-optim-" + file
- print("It will start processing video: {}".format(input))
- cap = cv2.VideoCapture(input)
- frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
- frame_size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
- # create VideoWriter,VideoWriter_fourcc is video decode
- fourcc = cv2.VideoWriter_fourcc('D', 'I', 'V', 'X')
- fps = cap.get(cv2.CAP_PROP_FPS)
- out = cv2.VideoWriter(output, fourcc, fps, frame_size)
- # the progress bar
- with tqdm(range(frame_count)) as pbar:
-
- while cap.isOpened():
- start = time.time()
- success, frame = cap.read()
- if success:
- datum.cvInputData = frame
- opWrapper.emplaceAndPop(op.VectorDatum([datum]))
- opframe = datum.cvOutputData
- FPS = 1 / (time.time() - start)
- opframe = cv2.putText(opframe, "FPS" + str(int(FPS)), (25, 50), cv2.FONT_HERSHEY_SIMPLEX, 1,
- (0, 255, 0), 3)
- out.write(opframe)
- pbar.update(1)
- else:
- break
-
- pbar.close()
- cv2.destroyAllWindows()
- out.release()
- cap.release()
- print("{} finished!".format(output))
-
-
- if __name__ == "__main__":
- video_dir = "video/2.avi"
- out_video(video_dir)
OpenPose运行结果
其实:
1.MediaPipe比较成熟,并且不需要下载或者配置一些乱七八糟的东西,而OpenPose就得配置一大堆乱七八糟的东西,很乱,除非是把caffe的模型转化成pytorch的模型,本人更熟悉pytorch。
2.MediaPipe推理速度比OpenPose快,快了不止一点点!
3.OpenPose的效果比MediaPipe的效果更好,并且有多人在画框时OpenPose能检测到所有人,而MediaPipe却只能检测到一个。
下一话
MediaPipe手势识别