• MATLAB小技巧(22)矩阵分析--逐步回归


    MATLAB小技巧(22)矩阵分析--逐步回归

    前言

    MATLAB进行图像处理相关的学习是非常友好的,可以从零开始,对基础的图像处理都已经有了封装好的许多可直接调用的函数,这个系列文章的话主要就是介绍一些大家在MATLAB中常用一些概念函数进行例程演示!

    在统计学中,回归分析(regression analysis)指的是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。

    在大数据分析中,回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。例如,司机的鲁莽驾驶与道路交通事故数量之间的关系,最好的研究方法就是回归。

    回归分析的主要方法:

    1. Linear Regression线性回归
      它是最为人熟知的建模技术之一。线性回归通常是人们在学习预测模型时首选的技术之一。在这种技术中,因变量是连续的,自变量可以是连续的也可以是离散的,回归线的性质是线性的。

    2. Logistic Regression逻辑回归
      逻辑回归是用来计算“事件=Success”和“事件=Failure”的概率。当因变量的类型属于二元(1 / 0,真/假,是/否)变量时,应该使用逻辑回归。这里,Y的值为0或1。

    3. Polynomial Regression多项式回归
      对于一个回归方程,如果自变量的指数大于1,那么它就是多项式回归方程。

    4. Stepwise Regression逐步回归
      在处理多个自变量时,可以使用这种形式的回归。在这种技术中,自变量的选择是在一个自动的过程中完成的,其中包括非人为操作。

    5. Ridge Regression岭回归
      当数据之间存在多重共线性(自变量高度相关)时,就需要使用岭回归分析。在存在多重共线性时,尽管最小二乘法(OLS)测得的估计值不存在偏差,它们的方差也会很大,从而使得观测值与真实值相差甚远。岭回归通过给回归估计值添加一个偏差值,来降低标准误差。

    6. Lasso Regression套索回归
      它类似于岭回归,Lasso (Least Absolute Shrinkage and Selection Operator)也会就回归系数向量给出惩罚值项。此外,它能够减少变化程度并提高线性回归模型的精度

    7. ElasticNet回归
      ElasticNet是Lasso和Ridge回归技术的混合体。它使用L1来训练并且L2优先作为正则化矩阵。当有多个相关的特征时,ElasticNet是很有用的。Lasso 会随机挑选他们其中的一个,而ElasticNet则会选择两个。
      Lasso和Ridge之间的实际的优点是,它允许ElasticNet继承循环状态下Ridge的一些稳定性。

    仿真示例的MATLAB版本为MATLAB2015b。

    一. MATLAB仿真

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %功能:矩阵分析--回归分析
    %环境:Win7,Matlab2015b
    %Modi: C.S
    %时间:2022-06-27
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    
    %% I. 清空环境变量
    clear all
    clc
    
    tic
    
    X=[7,26,6,60;
       1,29,15,52;
       11,56,8,20;
       11,31,8,47;
       7,52,6,33;
       11,55,9,22;
       3,71,17,6;
       1,31,22,44;
       2,54,18,22;
       21,47,4,26;
       1,40,23,34;
       11,66,9,12];  
    % #自变量数据,12个样本,每个样本4维
    Y=[78.5,74.3,104.3,87.6,95.9,109.2,102.7,72.5,93.1,115.9,83.8,113.3]';  %因变量数据  12个样本值
    
    xy =[X Y];
    
    %多元逐步回归分析
    %xy为待输入的原始数据,按照先x后y按列排列的数组
    %如:x1 x2 x3 x4 y等等
    
    
    %计算离差阵R(m,m)
    [n,m]=size(xy);
    
    %F1=0;F2=0;
    %disp('均值为:')
    xy_aver=mean(xy)%求均值
    for i=1:m
        for j=1:i
            R(i,j)=0;
            for k=1:n
                R(i,j)=R(i,j)+(xy(k,i)-xy_aver(i))*(xy(k,j)-xy_aver(j));
            end
            R(j,i)=R(i,j);
        end
        SR(i)=sqrt(R(i,i));%计算对角线元素的平方根
    end
    %disp('************ Deviation Matrix & Value of SR (离差阵R&SR) ***********') %输出离差阵R,及SR
    %[R  SR'] 
    %计算相关系数R(m,m)
    for i=1:m
        for j=1:i
            R(i,j)=R(i,j)/(SR(i)*SR(j));
            R(j,i)=R(i,j);
        end
    end
    %disp('********** Correlation Coefficient Matrix (相关系数阵R) **********')%输出相关系数阵R
    %R
    flag=1;%是否重复进行逐步回归的标志
    while(flag)
        disp('******** Stepwise Regression Analysis Start *************')
        F1=input('剔除门坎值:F1=');
        F2=input('引入门坎值:F2=');
        S=0;%计算步数
        L=0;%引入方程的自变量个数
        FQ=n-1;%残差平方和的自由度    
        disp('************** Discriminant Value of Contribution V **************')
        Imin(1)=0;Imax=1:m-1;%定义已引入(最小)和未引入(最大)变量的序号
        inn=0;outt=0;%引入和剔除的变量的顺序号
        while(1)
        %    pause
            VN=1E+08;%已引入方程的自变量贡献的最小值
            VX=0;%未引入方程的自变量贡献的最大值
            IN=0;%贡献最小的已引入的自变量序号
            IX=0;%贡献最大的未引入的自变量序号
            S=S+1;
            disp(['--------- step = ' int2str(S) '------------'])%输出步骤数
            for i=1:m-1
                if R(i,i)<1E-08
                    continue
                end
        %        disp(['VMAX=' int2str(VX) '; IMAX=' int2str(IX)]) %输出Vmax=VX;Imax=IX;
                V(i)=R(m,i)^2/R(i,i);%计算已引入的变量的方差贡献
                if V(i)>=0
                    if V(i)>VX %寻找未引入变量方差贡献的最大值
                        for in=1:length(Imax)
                            if i==Imax(in)
                                 VX=V(i);IX=i;
                             end
                         end
                    end
                end
                if abs(V(i))<VN %寻找已引入变量方差贡献的最小值
                    for out=1:length(Imin)
                        if i==Imin(out)
                            VN=abs(V(i));IN=i;
                         end
                     end                
                end        
        %disp(['方差贡献:V=' num2str(V(i)) 'VX=' num2str(VX) 'IX=' int2str(IX) 'VN=' num2str(VN) 'IN=' int2str(IN)])
            end
        %    Imax(inn+1)=IX;inn=inn+1;
            t=find(Imax==IX);
            Imax(t)=[];
            disp(['******** 方差贡献V **********' num2str(V)])
            disp(['VMAX=' num2str(VX) '; IMAX=' int2str(IX)]) %输出Vmax=VX;Imax=IX;
        %    disp(['VMIN=' num2str(VN) '; IMIN=' int2str(IN)]) %输出Vmin=VN;Imin=IN;
            if S==1
                disp(['S=' int2str(S)]) %输出S=1
            else
                disp(['VMIN=' num2str(VN) '; IMIN=' int2str(IN)]) %输出Vmin=VN;Imin=IN;
            end
            if S==1%||S==2||S==3
                FE=VX*(n-L-2)/(R(m,m)-VX);
                disp(['FE=' num2str(FE)]) %输出 FE
                if FE<F1
                    if L~=0
                        disp('Neither Delete Out Nor Select In!')
                    else
                        disp('May Be Smaller F1 And F2')
                        disp('The Stepwise Regression Analysis End!')
                        break;%程序结束
                    end
                else
                    L=L+1;FQ=FQ-1;K=IX;
                    disp(['X' int2str(K) ' Be Selected In'])
                    Imin(outt+1)=IX;outt=outt+1;
                    disp(['L = ' int2str(L) ])
                    R=xiaoqu(R,K) %调用子函数,执行消去变换
                    if L~=m-1
                        continue;
                    end
                    disp('Already Selecting End')
                    break;
                end
            else
                %计算剔除变量的F检验值
                FT=VN*(n-L-1)/R(m,m);
                disp(['剔除变量的F检验值' num2str(FT)])
                if FT>=F2
                    FE=VX*(n-L-2)/(R(m,m)-VX);
                    disp(['***FE=' num2str(FE)]) %输出 FE
                    if FE<F1
                        if L~=0
                            disp('Neither Delete Out Nor Select In!')
                            disp('The Stepwise Regression Analysis End!')
                            break;%程序结束
                        else
                            disp('May Be Smaller F1 And F2')
                            disp('The Stepwise Regression Analysis End!')
                            break;%程序结束
                        end
                    else
                        L=L+1;FQ=FQ-1;K=IX;
                        disp(['X' int2str(K) ' Be Selected In'])
                        disp(['L = ' int2str(L) ])
                        Imin(outt+1)=IX;outt=outt+1;
                        R=xiaoqu(R,K) %调用子函数,执行消去变换
                        if L~=m-1
                            continue;
                        end
                        disp('Already Selecting End')
                        break;
                    end
                else
                     L=L-1;FQ=FQ+1;K=IN;
                     disp(['X' int2str(K) ' Be Deleted Out'])
                     disp(['L = ' int2str(L) ' (No. of Variable Selected)'])
                     R=xiaoqu(R,K) %调用子函数
                     continue
                end
            end
        end
        %输出相应的计算结果
        for i=1:m-1
            kk=R(i,m)*R(m,i);
            if kk<0
                B(i)=R(i,m)*SR(m)/SR(i);
            else
                B(i)=0;
            end
        end
        B0=xy_aver(m); 
        for i=1:m-1
            B0=B0-B(i)*xy_aver(i);
        end
        disp(['回归系数为:' num2str(B0) ' ' num2str(B)])
        disp('回归方程为:')
        disp(['Y=' num2str(B0)])
        for i=1:m-1
            if B(i)~=0
                if B(i)>0
                    disp(['+' num2str(B(i)) 'X' int2str(i)]);
                else
                    disp([num2str(B(i)) 'X' int2str(i)]);
                end
            end    
        end        
    
        Q=SR(m)^2*R(m,m);%残差平方和
        disp(['Sum of SQuares of Residual Error(残差平方和) Q = ' num2str(Q)])
        S=SR(m)*sqrt(R(m,m)/FQ);%剩余标准差
        disp(['Standard Deviation(剩余标准差,即模型误差的均方根) S = ' num2str(S)])
        RR=sqrt(1-R(m,m));%复相关系数
        disp(['Multiple Correlation Coefficient(复相关系数) R = ' num2str(RR)])
        FF=FQ*(1-R(m,m))/(L*R(m,m));%回归方程显著性检验的F值
        disp(['F Value for Test of Regression(回归方程显著性检验,即回归模型的统计量) F = ' num2str(FF)])
        %F=SH*(m-n-1)/(SX*n);%F-统计量
        %PROB = 1 - fcdf(FF,m,n-length(Imin)-1)%与统计量F对应的概率P
    
        for i=1:m-1
            CC=R(i,i)*R(m,m);
            T(i)=R(i,m)/sqrt(CC/FQ);%各回归系数的t检验值
            R1(i)=R(i,m)/sqrt(CC+R(i,m)^2);%各自变量的偏相关系数
        end
        disp(['t Test Value of Argument(各回归系数的t检验值):' num2str(T)])
        disp(['Partial Corre.Coeffi.Ofargu.(各自变量的偏相关系数):' num2str(R1)])
    
        
        flag=input('是否重新进行逐步回归分析(1:是;0:否):');
    end
    toc
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226

    二. 仿真结果

    
    xy_aver =
    
        7.2500   46.5000   12.0833   31.5000   94.2583
    
    ******** Stepwise Regression Analysis Start *************
    剔除门坎值:F1=10
    引入门坎值:F2=100
    ************** Discriminant Value of Contribution V **************
    --------- step = 1------------
    ******** 方差贡献V **********0.53207      0.6395     0.26368     0.64727
    VMAX=0.64727; IMAX=4
    S=1
    FE=18.35
    X4 Be Selected In
    L = 1
    --------- step = 2------------
    ******** 方差贡献V **********0.32314   0.0058487     0.28898     0.64727
    VMAX=0.32314; IMAX=1
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值18.35
    X4 Be Deleted Out
    L = 0 (No. of Variable Selected)
    --------- step = 3------------
    ******** 方差贡献V **********0.53207      0.6395     0.26368     0.64727
    VMAX=0.6395; IMAX=2
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值7.1199
    X4 Be Deleted Out
    L = -1 (No. of Variable Selected)
    --------- step = 4------------
    ******** 方差贡献V **********0.32314   0.0058487     0.28898     0.64727
    VMAX=0.28898; IMAX=3
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值22.02
    X4 Be Deleted Out
    L = -2 (No. of Variable Selected)
    --------- step = 5------------
    ******** 方差贡献V **********0.53207      0.6395     0.26368     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值8.4145
    X4 Be Deleted Out
    L = -3 (No. of Variable Selected)
    --------- step = 6------------
    ******** 方差贡献V **********0.32314   0.0058487     0.28898     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值25.69
    X4 Be Deleted Out
    L = -4 (No. of Variable Selected)
    --------- step = 7------------
    ******** 方差贡献V **********0.53207      0.6395     0.26368     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值9.709
    X4 Be Deleted Out
    L = -5 (No. of Variable Selected)
    --------- step = 8------------
    ******** 方差贡献V **********0.32314   0.0058487     0.28898     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值29.36
    X4 Be Deleted Out
    L = -6 (No. of Variable Selected)
    --------- step = 9------------
    ******** 方差贡献V **********0.53207      0.6395     0.26368     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值11.0035
    X4 Be Deleted Out
    L = -7 (No. of Variable Selected)
    --------- step = 10------------
    ******** 方差贡献V **********0.32314   0.0058487     0.28898     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值33.03
    X4 Be Deleted Out
    L = -8 (No. of Variable Selected)
    --------- step = 11------------
    ******** 方差贡献V **********0.53207      0.6395     0.26368     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值12.2981
    X4 Be Deleted Out
    L = -9 (No. of Variable Selected)
    --------- step = 12------------
    ******** 方差贡献V **********0.32314   0.0058487     0.28898     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值36.7
    X4 Be Deleted Out
    L = -10 (No. of Variable Selected)
    --------- step = 13------------
    ******** 方差贡献V **********0.53207      0.6395     0.26368     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值13.5926
    X4 Be Deleted Out
    L = -11 (No. of Variable Selected)
    --------- step = 14------------
    ******** 方差贡献V **********0.32314   0.0058487     0.28898     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值40.37
    X4 Be Deleted Out
    L = -12 (No. of Variable Selected)
    --------- step = 15------------
    ******** 方差贡献V **********0.53207      0.6395     0.26368     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值14.8871
    X4 Be Deleted Out
    L = -13 (No. of Variable Selected)
    --------- step = 16------------
    ******** 方差贡献V **********0.32314   0.0058487     0.28898     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值44.04
    X4 Be Deleted Out
    L = -14 (No. of Variable Selected)
    --------- step = 17------------
    ******** 方差贡献V **********0.53207      0.6395     0.26368     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值16.1817
    X4 Be Deleted Out
    L = -15 (No. of Variable Selected)
    --------- step = 18------------
    ******** 方差贡献V **********0.32314   0.0058487     0.28898     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值47.71
    X4 Be Deleted Out
    L = -16 (No. of Variable Selected)
    --------- step = 19------------
    ******** 方差贡献V **********0.53207      0.6395     0.26368     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值17.4762
    X4 Be Deleted Out
    L = -17 (No. of Variable Selected)
    --------- step = 20------------
    ******** 方差贡献V **********0.32314   0.0058487     0.28898     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值51.38
    X4 Be Deleted Out
    L = -18 (No. of Variable Selected)
    --------- step = 21------------
    ******** 方差贡献V **********0.53207      0.6395     0.26368     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值18.7707
    X4 Be Deleted Out
    L = -19 (No. of Variable Selected)
    --------- step = 22------------
    ******** 方差贡献V **********0.32314   0.0058487     0.28898     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值55.05
    X4 Be Deleted Out
    L = -20 (No. of Variable Selected)
    --------- step = 23------------
    ******** 方差贡献V **********0.53207      0.6395     0.26368     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值20.0653
    X4 Be Deleted Out
    L = -21 (No. of Variable Selected)
    --------- step = 24------------
    ******** 方差贡献V **********0.32314   0.0058487     0.28898     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值58.72
    X4 Be Deleted Out
    L = -22 (No. of Variable Selected)
    --------- step = 25------------
    ******** 方差贡献V **********0.53207      0.6395     0.26368     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值21.3598
    X4 Be Deleted Out
    L = -23 (No. of Variable Selected)
    --------- step = 26------------
    ******** 方差贡献V **********0.32314   0.0058487     0.28898     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值62.39
    X4 Be Deleted Out
    L = -24 (No. of Variable Selected)
    --------- step = 27------------
    ******** 方差贡献V **********0.53207      0.6395     0.26368     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值22.6543
    X4 Be Deleted Out
    L = -25 (No. of Variable Selected)
    --------- step = 28------------
    ******** 方差贡献V **********0.32314   0.0058487     0.28898     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值66.06
    X4 Be Deleted Out
    L = -26 (No. of Variable Selected)
    --------- step = 29------------
    ******** 方差贡献V **********0.53207      0.6395     0.26368     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值23.9488
    X4 Be Deleted Out
    L = -27 (No. of Variable Selected)
    --------- step = 30------------
    ******** 方差贡献V **********0.32314   0.0058487     0.28898     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值69.73
    X4 Be Deleted Out
    L = -28 (No. of Variable Selected)
    --------- step = 31------------
    ******** 方差贡献V **********0.53207      0.6395     0.26368     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值25.2434
    X4 Be Deleted Out
    L = -29 (No. of Variable Selected)
    --------- step = 32------------
    ******** 方差贡献V **********0.32314   0.0058487     0.28898     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值73.4
    X4 Be Deleted Out
    L = -30 (No. of Variable Selected)
    --------- step = 33------------
    ******** 方差贡献V **********0.53207      0.6395     0.26368     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值26.5379
    X4 Be Deleted Out
    L = -31 (No. of Variable Selected)
    --------- step = 34------------
    ******** 方差贡献V **********0.32314   0.0058487     0.28898     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值77.07
    X4 Be Deleted Out
    L = -32 (No. of Variable Selected)
    --------- step = 35------------
    ******** 方差贡献V **********0.53207      0.6395     0.26368     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值27.8324
    X4 Be Deleted Out
    L = -33 (No. of Variable Selected)
    --------- step = 36------------
    ******** 方差贡献V **********0.32314   0.0058487     0.28898     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值80.74
    X4 Be Deleted Out
    L = -34 (No. of Variable Selected)
    --------- step = 37------------
    ******** 方差贡献V **********0.53207      0.6395     0.26368     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值29.127
    X4 Be Deleted Out
    L = -35 (No. of Variable Selected)
    --------- step = 38------------
    ******** 方差贡献V **********0.32314   0.0058487     0.28898     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值84.41
    X4 Be Deleted Out
    L = -36 (No. of Variable Selected)
    --------- step = 39------------
    ******** 方差贡献V **********0.53207      0.6395     0.26368     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值30.4215
    X4 Be Deleted Out
    L = -37 (No. of Variable Selected)
    --------- step = 40------------
    ******** 方差贡献V **********0.32314   0.0058487     0.28898     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值88.08
    X4 Be Deleted Out
    L = -38 (No. of Variable Selected)
    --------- step = 41------------
    ******** 方差贡献V **********0.53207      0.6395     0.26368     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值31.716
    X4 Be Deleted Out
    L = -39 (No. of Variable Selected)
    --------- step = 42------------
    ******** 方差贡献V **********0.32314   0.0058487     0.28898     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值91.75
    X4 Be Deleted Out
    L = -40 (No. of Variable Selected)
    --------- step = 43------------
    ******** 方差贡献V **********0.53207      0.6395     0.26368     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值33.0106
    X4 Be Deleted Out
    L = -41 (No. of Variable Selected)
    --------- step = 44------------
    ******** 方差贡献V **********0.32314   0.0058487     0.28898     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值95.42
    X4 Be Deleted Out
    L = -42 (No. of Variable Selected)
    --------- step = 45------------
    ******** 方差贡献V **********0.53207      0.6395     0.26368     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值34.3051
    X4 Be Deleted Out
    L = -43 (No. of Variable Selected)
    --------- step = 46------------
    ******** 方差贡献V **********0.32314   0.0058487     0.28898     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值99.09
    X4 Be Deleted Out
    L = -44 (No. of Variable Selected)
    --------- step = 47------------
    ******** 方差贡献V **********0.53207      0.6395     0.26368     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值35.5996
    X4 Be Deleted Out
    L = -45 (No. of Variable Selected)
    --------- step = 48------------
    ******** 方差贡献V **********0.32314   0.0058487     0.28898     0.64727
    VMAX=0; IMAX=0
    VMIN=0.64727; IMIN=4
    剔除变量的F检验值102.7599
    ***FE=0
    Neither Delete Out Nor Select In!
    The Stepwise Regression Analysis End!
    回归系数为:117.3697 0           0           0    -0.73369
    回归方程为:
    Y=117.3697
    -0.73369X4
    Sum of SQuares of Residual Error(残差平方和) Q = 883.291
    Standard Deviation(剩余标准差,即模型误差的均方根) S = 3.9715
    Multiple Correlation Coefficient(复相关系数) R = 0.80453
    F Value for Test of Regression(回归方程显著性检验,即回归模型的统计量) F = -2.2836
    t Test Value of Argument(各回归系数的t检验值):7.16248     0.963604     -6.77331     -10.1371
    Partial Corre.Coeffi.Ofargu.(各自变量的偏相关系数):0.69145     0.12771    -0.67106    -0.80453
    是否重新进行逐步回归分析(1:;0:)0
    时间已过 14.692745 秒。
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226
    • 227
    • 228
    • 229
    • 230
    • 231
    • 232
    • 233
    • 234
    • 235
    • 236
    • 237
    • 238
    • 239
    • 240
    • 241
    • 242
    • 243
    • 244
    • 245
    • 246
    • 247
    • 248
    • 249
    • 250
    • 251
    • 252
    • 253
    • 254
    • 255
    • 256
    • 257
    • 258
    • 259
    • 260
    • 261
    • 262
    • 263
    • 264
    • 265
    • 266
    • 267
    • 268
    • 269
    • 270
    • 271
    • 272
    • 273
    • 274
    • 275
    • 276
    • 277
    • 278
    • 279
    • 280
    • 281
    • 282
    • 283
    • 284
    • 285
    • 286
    • 287
    • 288
    • 289
    • 290
    • 291
    • 292
    • 293
    • 294
    • 295
    • 296
    • 297
    • 298
    • 299
    • 300
    • 301
    • 302
    • 303
    • 304
    • 305
    • 306
    • 307
    • 308
    • 309
    • 310
    • 311
    • 312
    • 313
    • 314
    • 315
    • 316
    • 317
    • 318
    • 319
    • 320
    • 321
    • 322
    • 323
    • 324
    • 325
    • 326
    • 327
    • 328
    • 329
    • 330
    • 331
    • 332
    • 333
    • 334
    • 335
    • 336
    • 337
    • 338
    • 339
    • 340
    • 341
    • 342
    • 343
    • 344
    • 345
    • 346
    • 347
    • 348
    • 349
    • 350
    • 351
    • 352
    • 353
    • 354
    • 355
    • 356
    • 357
    • 358

    在这里插入图片描述

    三. 小结

    逐步回归分析的示例,后期可能会用到,这里做个笔记。每天学一个MATLAB小知识,大家一起来学习进步阿!

  • 相关阅读:
    elasticsearch三节点集群,关闭master服务,集群状态改变为yellow后,重新自动选举产生新的master节点,集群恢复。
    出海有“云”!华为云全球加速助力跨国企业提升网络体验
    Clickhouse 单机版 及 Clickhouse 集群的安装及搭建
    博客马拉松|和 OpenMLDB 一路向前
    双十二蓝牙耳机啥牌子好?2022年度热销蓝牙耳机排名
    Jenkins 参数化构建中 各参数介绍与示例
    Promethues(五)查询-PromQL 语言-保证易懂好学
    C语言基础练习——Day12
    MySQL中表的设计
    python高级面试题
  • 原文地址:https://blog.csdn.net/sinat_34897952/article/details/125463096