Hi,我是阿昌
,今天记录学习的关于使用MAT
和 Arthas 工具
来定位分析问题。
使用 jstat
等工具虽然可以观察堆内存使用情况的变化,但是对程序内到底有多少对象、哪些是大对象还一无所知,也就是说只能看到问题但无法定位问题。
而堆转储,就好似得到了病人在某个瞬间的全景核磁影像,可以拿着慢慢分析。
Java 的 OutOfMemoryError
是比较严重的问题,需要分析出根因,所以对生产应用一般都会这样设置 JVM 参数,方便发生 OOM 时进行堆转储:
-XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=.
使用 Eclipse 的 Memory Analyzer(也叫做 MAT)做堆转储的分析。你可以点击这个链接,下载 MAT。
使用 MAT
分析 OOM 问题,一般可以按照以下思路进行:
比如,我手头有一个 OOM 后得到的转储文件 java_pid29569.hprof,现在要使用 MAT 的直方图、支配树、线程栈、OQL 等功能来分析此次 OOM 的原因。
首先,用 MAT 打开后先进入的是概览信息界面,可以看到整个堆是 437.6MB:
那么,这 437.6MB 都是什么对象呢?
如图所示,工具栏的第二个按钮可以打开直方图,直方图按照类型进行分组,列出了每个类有多少个实例,以及占用的内存。
可以看到,char[]字节数
组占用内存最多,对象数量也很多,结合第二位的 String 类型对象数量也很多,大概可以猜出(String 使用 char[]作为实际数据存储)程序可能是被字符串占满了内存,导致 OOM。
在 char[]上点击右键,选择 List objects->with incoming references
,就可以列出所有的 char[]实例,以及每个 char[]的整个引用关系链
:
随机展开一个 char[],如下图所示:
按照红色框中的引用链来查看,尝试找到这些大 char[]
的来源:
Retained Heap(深堆)代表对象本身和对象关联的对象占用的内存,Shallow Heap(浅堆)代表对象本身占用的内存。比如,我们的 FooService 中的 data 这个 ArrayList 对象本身只有 16 字节,但是其所有关联的对象占用了 431MB 内存。
这些就可以说明,肯定有哪里在不断向这个 List 中添加 String 数据,导致了 OOM。
左侧的蓝色框可以查看每一个实例的内部属性,图中显示 FooService 有一个 data 属性,类型是 ArrayList。
如果我们希望看到字符串完整内容的话,可以右键选择 Copy->Value
,把值复制到剪贴板或保存到文件中:
这里,我们复制出的是 10000 个字符 a(下图红色部分可以看到)。对于真实案例,查看大字符串、大数据的实际内容对于识别数据来源,有很大意义:
看到这些,我们已经基本可以还原出真实的代码是怎样的了。其实,我们之前使用直方图定位 FooService,已经走了些弯路。你可以点击工具栏中第三个按钮(下图左上角的红框所示)进入支配树界面(有关支配树的具体概念参考这里)。
这个界面会按照对象保留的 Retained Heap 倒序直接列出占用内存最大的对象。
可以看到,第一位就是 FooService,整个路径是 FooSerice->ArrayList->Object[]->String->char[](蓝色框部分)
,一共有 21523 个字符串(绿色方框部分):
这样,我们就从内存角度定位到 FooService 是根源了。
那么,OOM 的时候,FooService 是在执行什么逻辑呢?为解决这个问题,我们可以点击工具栏的第五个按钮(下图红色框所示)。
打开线程视图,首先看到的就是一个名为 main 的线程(Name 列),展开后果然发现了 FooService:
先执行的方法先入栈,所以线程栈最上面是线程当前执行的方法,逐一往下看能看到整个调用路径。
因为我们希望了解 FooService.oom() 方法,看看是谁在调用它,它的内部又调用了谁,所以选择以 FooService.oom() 方法(蓝色框)为起点来分析这个调用栈。往下看整个绿色框部分,oom() 方法被 OOMApplication 的 run 方法调用,而这个 run 方法又被 SpringAppliction.callRunner 方法调用。
看到参数中的 CommandLineRunner 你应该能想到,OOMApplication 其实是实现了 CommandLineRunner 接口,所以是 SpringBoot 应用程序启动后执行的。以 FooService 为起点往上看,从紫色框中的 Collectors 和 IntPipeline,你大概也可以猜出,这些字符串是由 Stream 操作产生的。再往上看,可以发现在 StringBuilder 的 append 操作的时候,出现了 OutOfMemoryError 异常(黑色框部分),说明这这个线程抛出了 OOM 异常。
我们看到,整个程序是 Spring Boot 应用程序,那么 FooService 是不是 Spring 的 Bean 呢,又是不是单例呢?如果能分析出这点的话,就更能确认是因为反复调用同一个 FooService 的 oom 方法,然后导致其内部的 ArrayList 不断增加数据的。
点击工具栏的第四个按钮(如下图红框所示),来到 OQL 界面。在这个界面,我们可以使用类似 SQL 的语法,在 dump 中搜索数据(你可以直接在 MAT 帮助菜单搜索 OQL Syntax,来查看 OQL 的详细语法)。
比如,输入如下语句搜索 FooService 的实例:
SELECT * FROM org.geekbang.time.commonmistakes.troubleshootingtools.oom.FooService
可以看到只有一个实例,然后我们通过 List objects 功能搜索引用 FooService 的对象:
得到以下结果:
可以看到,一共两处引用:
你甚至可以在这个 HashMap 上点击右键,选择 Java Collections->Hash Entries 功能
,来查看其内容:
这样就列出了所有的 Bean,可以在 Value 上的 Regex 进一步过滤。输入 FooService 后可以看到,类型为 FooService 的 Bean 只有一个,其名字是 fooService:
到现在为止,我们虽然没看程序代码,但是已经大概知道程序出现 OOM 的原因和大概的调用栈了。我们再贴出程序来对比一下,果然和我们看到得一模一样:
@SpringBootApplication
public class OOMApplication implements CommandLineRunner {
@Autowired
FooService fooService;
public static void main(String[] args) {
SpringApplication.run(OOMApplication.class, args);
}
@Override
public void run(String... args) throws Exception {
//程序启动后,不断调用Fooservice.oom()方法
while (true) {
fooService.oom();
}
}
}
@Component
public class FooService {
List<String> data = new ArrayList<>();
public void oom() {
//往同一个ArrayList中不断加入大小为10KB的字符串
data.add(IntStream.rangeClosed(1, 10_000)
.mapToObj(__ -> "a")
.collect(Collectors.joining("")));
}
}
到这里,我们使用 MAT 工具从对象清单、大对象、线程栈等视角,分析了一个 OOM 程序的堆转储。
可以发现,有了堆转储,几乎相当于拿到了应用程序的源码 + 当时那一刻的快照,OOM 的问题无从遁形。
Arthas是阿里开源的 Java 诊断工具,相比 JDK 内置的诊断工具,要更人性化,并且功能强大,可以实现许多问题的一键定位,而且可以一键反编译类查看源码,甚至是直接进行生产代码热修复,实现在一个工具内快速定位和修复问题的一站式服务。
首先,下载并启动 Arthas
:
curl -O https://alibaba.github.io/arthas/arthas-boot.jar
java -jar arthas-boot.jar
启动后,直接找到我们要排查的 JVM 进程,然后可以看到 Arthas 附加进程成功:
[INFO] arthas-boot version: 3.1.7
[INFO] Found existing java process, please choose one and hit RETURN.
* [1]: 12707
[2]: 30724 org.jetbrains.jps.cmdline.Launcher
[3]: 30725 org.geekbang.time.commonmistakes.troubleshootingtools.highcpu.HighCPUApplication
[4]: 24312 sun.tools.jconsole.JConsole
[5]: 26328 org.jetbrains.jps.cmdline.Launcher
[6]: 24106 org.netbeans.lib.profiler.server.ProfilerServer
3
[INFO] arthas home: /Users/zhuye/.arthas/lib/3.1.7/arthas
[INFO] Try to attach process 30725
[INFO] Attach process 30725 success.
[INFO] arthas-client connect 127.0.0.1 3658
,---. ,------. ,--------.,--. ,--. ,---. ,---.
/ O \ | .--. ''--. .--'| '--' | / O \ ' .-'
| .-. || '--'.' | | | .--. || .-. |`. `-.
| | | || |\ \ | | | | | || | | |.-' |
`--' `--'`--' '--' `--' `--' `--'`--' `--'`-----'
wiki https://alibaba.github.io/arthas
tutorials https://alibaba.github.io/arthas/arthas-tutorials
version 3.1.7
pid 30725
time 2020-01-30 15:48:33
输出 help 命令,可以看到所有支持的命令列表。
这次会用到 dashboard、thread、jad、watch、ognl 命令
,来定位这个 HighCPUApplication 进程。你可以通过官方文档,查看这些命令的完整介绍:
dashboard 命令
用于整体展示进程所有线程、内存、GC 等情况,其输出如下:
可以看到,CPU 高并不是 GC 引起的,占用 CPU 较多的线程有 8 个,其中 7 个是 ForkJoinPool.commonPool。
ForkJoinPool.commonPool 是并行流默认使用的线程池。所以,此次 CPU 高的问题,应该出现在某段并行流的代码上。
接下来,要查看最繁忙的线程在执行的线程栈,可以使用 thread -n 命令
。这里,我们查看下最忙的 8 个线程:
thread -n 8
输出如下:
可以看到,由于这些线程都在处理 MD5 的操作,所以占用了大量 CPU 资源。
我们希望分析出代码中哪些逻辑可能会执行这个操作,所以需要从方法栈上找出我们自己写的类,并重点关注。
由于主线程也参与了 ForkJoinPool 的任务处理,因此我们可以通过主线程的栈看到需要重点关注 org.geekbang.time.commonmistakes.troubleshootingtools.highcpu.HighCPUApplication 类的 doTask 方法。
接下来,使用 jad 命令
直接对 HighCPUApplication 类反编译:
jad org.geekbang.time.commonmistakes.troubleshootingtools.highcpu.HighCPUApplication
可以看到,调用路径是 main->task()->doTask()
,当 doTask 方法接收到的 int 参数等于某个常量的时候,会进行 1 万次的 MD5 操作,这就是耗费 CPU 的来源。
那么,这个魔法值到底是多少呢?
你可能想到了,通过 jad 命令继续查看 User 类即可。这里因为是 Demo,所以我没有给出很复杂的逻辑。
在业务逻辑很复杂的代码中,判断逻辑不可能这么直白,我们可能还需要分析出 doTask 的“慢”会慢在什么入参上。
这时,我们可以使用 watch 命令来观察方法入参。如下命令,表示需要监控耗时超过 100 毫秒的 doTask 方法的入参,并且输出入参,展开 2 层入参参数:
watch org.geekbang.time.commonmistakes.troubleshootingtools.highcpu.HighCPUApplication doTask '{params}' '#cost>100' -x 2
可以看到,所有耗时较久的 doTask 方法的入参都是 0,意味着 User.ADMN_ID 常量应该是 0。
最后,我们使用 ognl 命令
来运行一个表达式,直接查询 User 类的 ADMIN_ID 静态字段来验证是不是这样,得到的结果果然是 0:
[arthas@31126]$ ognl '@org.geekbang.time.commonmistakes.troubleshootingtools.highcpu.User@ADMIN_ID'
@Integer[0]
需要额外说明的是,由于 monitor
、trace
、watch
等命令是通过字节码增强技术来实现的,会在指定类的方法中插入一些切面来实现数据统计和观测,因此诊断结束要执行 shutdown
来还原类或方法字节码,然后退出 Arthas。
在这个案例中,我们通过 Arthas 工具排查了高 CPU 的问题:
可见,使用 Arthas 来定位生产问题根本用不着原始代码,也用不着通过增加日志来帮助我们分析入参,一个工具即可完成定位问题、分析问题的全套流程。对于应用故障分析,除了阿里 Arthas 之外,还可以关注去哪儿的Bistoury 工具,其提供了可视化界面,并且可以针对多台机器进行管理,甚至提供了在线断点调试等功能,模拟 IDE 的调试体验。