• kafka高级特性


    kafka生产者高级特性

    一、工作流程

    Kafka中消息是以topic进行分类的,Producer生产消息,Consumer消费消息,都是面向topic的

    在这里插入图片描述

    Topic是逻辑上的改变,Partition是物理上的概念,每个Partition对应着一个log文件,该log文件中存储的就是producer生产的数据,topic=N*partition;partition=log

    Producer生产的数据会被不断的追加到该log文件的末端,且每条数据都有自己的offset,consumer组中的每个consumer,都会实时记录自己消费到了哪个offset,以便出错恢复的时候,可以从上次的位置继续消费

    二、文件存储

    Kafka文件存储也是通过本地落盘的方式存储的,主要是通过相应的log与index等文件保存具体的消息文件

    在这里插入图片描述

    生产者不断的向log文件追加消息文件,为了防止log文件过大导致定位效率低下,Kafka的log文件以1G为一个分界点,当.log文件大小超过1G的时候,此时会创建一个新的.log文件,同时为了快速定位大文件中消息位置,Kafka采取了分片和索引的机制来加速定位在kafka的存储log的地方,即文件的地方,会存在消费的偏移量以及具体的分区信息,分区信息的话主要包括.index.log文件组成

    分区目的是为了备份,所以同一个分区存储在不同的broker上,即当third-2存在当前机器kafka01上,实际上再kafka03中也有这个分区的文件(副本),分区中包含副本,即一个分区可以设置多个副本,副本中有一个是leader,其余为follower

    在这里插入图片描述

    三、生产者分区策略

    分区的原因

    • 方便在集群中扩展:每个partition通过调整以适应它所在的机器,而一个Topic又可以有多个partition组成,因此整个集群可以适应适合的数据
    • 可以提高并发:以Partition为单位进行读写。类似于多路

    分区的原则

    • 指明partition(这里的指明是指第几个分区)的情况下,直接将指明的值作为partition的值
    • 没有指明partition的情况下,但是存在值key,此时将key的hash值与topic的partition总数进行取余得到partition值
    • 值与partition均无的情况下,第一次调用时随机生成一个整数,后面每次调用在这个整数上自增,将这个值与topic可用的partition总数取余得到partition值,即round-robin算法

    四、生产者ISR

    为保证producer发送的数据能够可靠的发送到指定的topic中,topic的每个partition收到producer发送的数据后,都需要向producer发送ackacknowledgement,如果producer收到ack就会进行下一轮的发送,否则重新发送数据

    在这里插入图片描述

    发送ack的时机:

    确保follower与leader同步完成之后,leader在发送ack,这样可以保证在leader挂掉之后,follower中可以选出新的leader(主要是确保follower中数据不丢失)

    follower同步完成多少才发送ack

    • 半数以上的follower同步完成,即可发送ack
    • 全部的follower同步完成,才可以发送ack

    副本数据同步策略

    半数follower同步完成即发送ack

    优点:延迟低

    缺点:选举新的leader的时候,容忍n台节点的故障,需要2n+1个副本(因为需要半数同意,所以故障的时候,能够选举的前提是剩下的副本超过半数),容错率为1/2

    全部follower同步完成完成发送ack

    缺点:延迟高,因为需要全部副本同步完成才可

    优点:容错率搞,选举新的leader的时候,容忍n台节点的故障只需要n+1个副本即可,因为只需要剩下的一个人同意即可发送ack了

    kafka选择的是第二种,因为在容错率上面更加有优势,同时对于分区的数据而言,每个分区都有大量的数据,第一种方案会造成大量数据的冗余。虽然第二种网络延迟较高,但是网络延迟对于Kafka的影响较小

    ISR(同步副本集)

    问题:

    采用了第二种方案进行同步ack之后,如果leader收到数据,所有的follower开始同步数据,但有一个follower因为某种故障,迟迟不能够与leader进行同步,那么leader就要一直等待下去,直到它同步完成,才可以发送ack,此时需要如何解决这个问题呢?

    解决方案

    leader中维护了一个动态的ISR(in-sync replica set),即与leader保持同步的follower集合,当ISR中的follower完成数据的同步之后,给leader发送ack,如果follower长时间没有向leader同步数据,则该follower将从ISR中被踢出,该之间阈值由replica.lag.time.max.ms参数设定。当leader发生故障之后,会从ISR中选举出新的leader

    五、生产者ack机制

    对于某些不太重要的数据,对数据的可靠性要求不是很高,能够容忍数据的少量丢失,所以没有必要等到ISR中所有的follower全部接受成功。

    Kafka为用户提供了三种可靠性级别,用户根据可靠性和延迟的要求进行权衡选择不同的配置。

    ack参数配置:

    • 0:producer不等待broker的ack,这一操作提供了最低的延迟,broker接收到还没有写入磁盘就已经返回,当broker故障时有可能丢失数据
    • 1:producer等待broker的ack,partition的leader落盘成功后返回ack,如果在follower同步成功之前leader故障,那么将丢失数据。(只是leader落盘
    • -1(all):producer等待broker的ack,partition的leader和ISR的follower全部落盘成功才返回ack,但是如果在follower同步完成后,broker发送ack之前,如果leader发生故障,会造成数据重复。(这里的数据重复是因为没有收到,所以继续重发导致的数据重复)

    六、数据一致性问题

    在这里插入图片描述

    • LEO(Log End Offset):每个副本最后的一个offset
    • HW(High Watermark):高水位,指代消费者能见到的最大的offset,ISR队列中最小的LEO。

    follower故障和leader故障

    • follower故障

      follower发生故障后会被临时提出ISR,等待该follower恢复后,follower会读取本地磁盘记录的上次的HW,并将log文件高于HW的部分截取掉,从HW开始向leader进行同步,等待该follower的LEO大于等于该partition的HW,即follower追上leader之后,就可以重新加入ISR了

    • leader故障

      leader发生故障之后,会从ISR中选出一个新的leader,为了保证多个副本之间的数据的一致性,其余的follower会先将各自的log文件高于HW的部分截掉,然后从新的leader中同步数据

    这只能保证副本之间的数据一致性,并不能保证数据不丢失或者不重复

    七、幂等性

    将ack级别设置为(-1),可以保证数据不会丢失(数据可能会重复),将ack设置为0,可以保证生产者每条消息只发送一次(数据可能会丢失)

    0.11版本的Kafka之前,只能保证数据不丢失,在下游对数据的重复进行去重操作,多余多个下游应用的情况,则分别进行全局去重,对性能有很大影响

    0.11版本的kafka,引入了一项重大特性:幂等性,幂等性指代Producer不论向Server发送了多少次重复数据,Server端都只会持久化一条数据。幂等性结合At Least Once语义就构成了Kafka的Exactly Once语义

    启用幂等性,即在Producer的参数中设置enable.idempotence=true即可,Kafka的幂等性实现实际是将之前的去重操作放在了数据上游来做,开启幂等性的Producer在初始化的时候会被分配一个PID,发往同一个Partition的消息会附带Sequence Number,而Broker端会对<PID,Partition,SeqNumber>做缓存,当具有相同主键的消息的时候,Broker只会持久化一条

    但PID在重启之后会发生变化,同时不同的Partition也具有不同的主键,所以幂等性无法保证跨分区跨会话的Exactly Once

    kafka消费者高级特性

    一、消费方式

    consumer采用pull拉的方式来从broker中读取数据,pull方式则可以让consumer根据自己的消费处理能力以适当的速度消费消息。

    pull模式不足在于如果Kafka中没有数据,消费者可能会陷入循环之中,一直返回空数据,针对这一点,Kafka的消费者在消费数据时会传入一个时长参数timeout,如果当前没有数据可供消费,consumer会等待一段时间之后再返回,时长为timeout

    二、分区分配策略

    一个consumer group中有多个consumer,一个topic有多个partition,所以必然会涉及到partition的分配问题,即确定那个partition由那个consumer消费的问题

    Round-Robin(轮询)

    主要采用轮询的方式分配所有的分区,该策略主要实现的步骤

    假设存在三个topic:t0/t1/t2,分别拥有1/2/3个分区,共有6个分区,分别为t0-0/t1-0/t1-1/t2-0/t2-1/t2-2,这里假设我们有三个Consumer,C0、C1、C2,订阅情况为C0:t0,C1:t0、t1,C2:t0/t1/t2。

    此时round-robin采取的分配方式,则是按照分区的字典对分区和消费者进行排序,然后对分区进行循环遍历,遇到自己订阅的则消费,否则向下轮询下一个消费者。即按照分区轮询消费者,继而消息被消费
    在这里插入图片描述

    分区在循环遍历消费者,自己被当前消费者订阅,则消息被消费,否则消费者向下消息继续遍历(消息没有被消费)。轮询的方式会导致每个Consumer所承载的分区数量不一致,从而导致各个Consumer压力不均。上面的C2因为订阅的比较多,导致承受的压力也相对较大

    Range(重分配)

    Range的重分配策略,首先计算各个Consumer将会承载的分区数量,然后将指定数量的分区分配给该Consumer

    假设存在两个Consumer,C0和C1,两个Topic,t0和t1,这两个Topic分别都有三个分区,那么总共的分区有6个,t0-0,t0-1,t0-2,t1-0,t1-1,t1-2。分配方式如下:

    • range按照topic一次进行分配,即消费者遍历topic,t0,含有三个分区,同时有两个订阅了该topic的消费者,将这些分区和消费者按照字典序排列
    • 按照平均分配的方式计算每个Consumer会得到多少个分区,如果没有除尽,多出来的分区则按照字典序挨个分配给消费者。按照此方式以此分配每一个topic给订阅的消费者,最后完成topic分区的分配

    在这里插入图片描述

    三、消费者offset的存储

    由于Consumer在消费过程中可能会出现断电宕机等故障,Consumer恢复以后,需要从故障前的位置继续消费,所以Consumer需要实时记录自己消费到了那个offset,以便故障恢复后继续消费

    Kafka0.9版本之前,consumer默认将offset保存在zookeeper中,从0.9版本之后,consumer默认将offset保存在kafka一个内置的topic中,该topic为__consumer_offsets
    在这里插入图片描述

    事务

    开启事务 , 必须开启幂等性

    kafka0.11版本开始引入了事务支持,事务可以保证KafkaExactly Once语义的基础上,生产和消费可以跨分区的会话,要么全部成功,要么全部失败

    Producer事务

    为了按跨分区跨会话的事务,需要引入一个全局唯一的Transaction ID,并将Producer获得的PID(可以理解为Producer ID)和Transaction ID进行绑定,这样当Producer重启之后就可以通过正在进行的Transaction ID获得原来的PID

    为了管理Transaction,Kafka引入了一个新的组件Transaction Coordinator,Producer就是通过有和Transaction Coordinator交互获得Transaction ID对应的任务状态,Transaction Coordinator还负责将事务信息写入内部的一个Topic中,这样即使整个服务重启,由于事务状态得到保存,进行中的事务状态可以恢复,从而继续进行

    Consumer事务

    对于Consumer而言,事务的保证相比Producer相对较弱,尤其是无法保证Commit的信息被精确消费,这是由于Consumer可以通过offset访问任意信息,而且不同的Segment File声明周期不同,同一事务的消息可能会出现重启后被删除的情况

  • 相关阅读:
    Radon变换
    pytorch中unsqueeze用法说明
    lambda表达式
    基于python的反爬虫技术的研究设计与实现
    Java开发全终端实战租房项目-开发GraphQL服务以及前台系统搭建
    CubeMx笔记 --SPI
    编程命名方法
    UnityHub无法打开项目问题,打开项目闪退回到hub界面
    《程序员的自我修养》笔记
    java毕业生设计学习类视频网计算机源码+系统+mysql+调试部署+lw
  • 原文地址:https://blog.csdn.net/weixin_43296313/article/details/125525355