• MOOS程序解析记录(7)pMarinePID解析


    MOOS程序解析记录(7)pMarinePID解析


    花了一天多的时间,对pMarinePID的源码进行了阅读,这里做一个分析记录,为后面改进控制算法做好基础。

    前言

    pMarinePID应用程序实现了一个简单的PID控制器,根据舵机的输入产生适合执行器控制的值。在仿真中,输出量被仿真模型所使用而不是真实的AUV。
    pMarinePID通常从pHelmIvP这里获取数据,读取一些的航向角和速度,并输出执行器的期望舵角和期望推力值。

    一、pMarinePID概况

    这是pMarinePID的文件框架,其中文件内容如下所示:
    示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。
    主要运行的代码在MarinePID程序中,而PIDEngine为在MarinePID程序中调用的类。而ScalarPID为PIDEngine中调用的类(套娃了属于是)

    1.ScalarPID

    该部分定义了核心的PID控制器的相关结构,设置了三个PID参数,增益,期望,限幅。给出一点下面用到的c++知识,因为下面重载了一下=运算符。核心代码会在之后
    友元函数
    运算符重载

    头文件代码如下:

    #ifndef MOD_SCALARPID_HEADER
    #define MOD_SCALARPID_HEADER
    
    #if _MSC_VER > 1000
    #pragma once
    #endif // _MSC_VER > 1000
    
    #include <string>
    #include <list>
    #include <fstream>
    
    class ScalarPID  
    {
    public:
      ScalarPID();
      ScalarPID(double dfKp, double dfKd,//定义了构造函数,三种重载形式
    	     double dfKi, double dfIntegralLimit,
    	     double dfOutputLimit);
      ScalarPID(const ScalarPID&);    // **new **
      virtual ~ScalarPID();
    
      const ScalarPID &operator=(const ScalarPID&);  // **new**//定义了一下=运算符
    
      void SetGains(double dfKp,double dfKd,double dfKi);
      void SetLimits(double dfIntegralLimit, double dfOutputLimit);
    
      void SetGoal(double dfGoal);
      void SetLogPath(std::string & sPath);
      void SetLog(bool bLog);
      void SetName(std::string sName);
      bool Run(double dfeIn, double dfErrorTime, double& dfOut);//核心代码
    
      void setDebug(bool v=true) {m_debug=v;}
      bool getDebug() const      {return(m_debug);}
      bool getMaxSat() const     {return(m_max_sat);}
      
      std::string getDebugStr() const {return(m_debug_str);}
      
    protected:  // Core parameters
      double m_dfKi;
      double m_dfKd;
      double m_dfKp;
      double m_dfIntegralLimit;
      double m_dfOutputLimit;
    
    protected: // Data persistent between runs
      double m_dfeOld;
      double m_dfOldTime;
      double m_dfOut;
      unsigned int m_nHistorySize;
      std::list<double> m_DiffHistory;
      
      double m_dfe;
      double m_dfeSum;
      double m_dfeDiff;
      double m_dfDT;
    
      
    protected:
      bool Log();
      
      //note this is just for logging purposes...
      double  m_dfGoal;
      int     m_nIterations;
    
      bool          m_bLog;
      std::string   m_sName;
      std::string   m_sLogPath;
      std::ofstream m_LogFile;
    
      // Added April 2019, mikerb, for optional additional debugging
      std::string   m_debug_str;
      bool          m_debug;
    
      // Added April 2019, mikerb, for optional additional debugging
      bool          m_max_sat;  
    };
    
    #endif
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79

    核心代码:
    PID算法

    //-------------------------------------------------------------------
    bool ScalarPID::Run(double dfeIn, double dfErrorTime, double &dfOut)
    {
      // Reset max_sat flag on every interation
      m_max_sat = false;
      
      if(m_debug) {
        m_debug_str =  "dfeIn=" + doubleToString(dfeIn);
        m_debug_str += ", dfErrorTime=" + doubleToString(dfErrorTime);
      }
        
      m_dfe  = dfeIn;//输入赋值
      
      //figure out time increment...
      if(m_nIterations++!=0) {
            
        m_dfDT = dfErrorTime-m_dfOldTime;//计算时间差,下面都是时间差出现bug的情况报错
    
        if(m_debug)
          m_debug_str += ", m_dfDT=" + doubleToString(m_dfDT);
          
        
        if(m_dfDT<0) {
          MOOSTrace("ScalarPID::Run() : negative or zero sample time\n");
          return(false);
        }
        else if(m_dfDT ==0) {
          //nothing to do...
          dfOut = m_dfOut;
          Log();
          return(true);
        }
        
        //figure out differntial//计算微分
        double dfDiffNow = (dfeIn-m_dfeOld)/m_dfDT;//求取当前时刻的微分
        m_DiffHistory.push_front(dfDiffNow);//列表内增加当前时刻的微分
        while(m_DiffHistory.size() >= m_nHistorySize) {//按照初始化是list数量为10
          m_DiffHistory.pop_back();//删除过时的微分
        }
        if(m_debug) {
          m_debug_str += ", dfDiffNow=" + doubleToString(dfDiffNow);
          m_debug_str += ", DiffHistSize=" + uintToString(m_DiffHistory.size());
        }
          
        m_dfeDiff = 0;
        list<double>::iterator p;
        for(p = m_DiffHistory.begin();p!=m_DiffHistory.end();p++) {
          m_dfeDiff   += *p;   //10个最近时间的微分求和
        }
        if(m_debug) 
          m_debug_str += ", mdfeDiff(1)=" + doubleToString(m_dfeDiff);
    
        m_dfeDiff/=m_DiffHistory.size();//10个最近时间的微分求和再取平均
        if(m_debug) 
          m_debug_str += ", mdfeDiff(2)=" + doubleToString(m_dfeDiff);
      }
      else {
        //this is our first time through
        m_dfeDiff = 0;
      }
      
      
      if(m_dfKi>0) {//如果用到积分的话
        //calculate integral term  
        m_dfeSum    +=  m_dfKi*m_dfe*m_dfDT;//求取该段时间内的积分值
    
        if(m_debug) {
          m_debug_str += ", m_dfKi" + doubleToString(m_dfKi);
          m_debug_str += ", m_dfeSum(1)" + doubleToString(m_dfeSum);
          m_debug_str += ", m_dfIntegralLimit" + doubleToString(m_dfIntegralLimit);
        }
        
        //prevent integral wind up...//防止积分饱和
        if(fabs(m_dfeSum)>=fabs(m_dfIntegralLimit)) {//求得积分超过限幅
          int nSign = (int)(fabs(m_dfeSum)/m_dfeSum);//求积分的正负号
          m_dfeSum = nSign*fabs(m_dfIntegralLimit);//按照限幅的值输出
          if(m_debug) 
    	m_debug_str += ", m_dfeSum(2)" + doubleToString(m_dfeSum);
        }
      }
      else {
        m_dfeSum = 0;
      }
    
      // m_dfOut = (m_dfKp*m_dfe) + (m_dfKd*m_dfeDiff) + m_dfeSum; 
      //        m_dfKp =
      //        m_dfe  =
      //     (m_dfKp * m_dfe) =
      //        m_dfKd = 
      //     m_dfeDiff = 0.10223 
      //     (m_dfKd * m_dfeDiff) =
      //     m_dfeSum  = 
    
      // dfeIn=145.88560, dfErrorTime=1556750915.09088, m_dfDT=0.10035, dfDiffNow=0.09397, DiffHistSize=9,
      // mdfeDiff(1)=0.92005, mdfeDiff(2)=0.10223, m_dfOut(1)218.84885, m_dfOut(1)100 
    
      
      
      //do pid control
      m_dfOut = (m_dfKp*m_dfe) + (m_dfKd*m_dfeDiff) + m_dfeSum; //PID公式求输出值
      if(m_debug) 
        m_debug_str += ", m_dfOut(1)" + doubleToStringX(m_dfOut);
      //note Ki is already in dfeSum
      
      //prevent saturation..防止输出饱和
      if(fabs(m_dfOut)>=fabs(m_dfOutputLimit) ) {        
        int nSign =(int)( fabs(m_dfOut)/m_dfOut);
        m_dfOut = nSign*fabs(m_dfOutputLimit);
        if(m_debug) 
          m_debug_str += ", m_dfOut(1)" + doubleToStringX(m_dfOut);
        m_max_sat = true;
      }
      
      //save old value..保留上一次的结果
      m_dfeOld    = m_dfe;
      m_dfOldTime = dfErrorTime;
      
      dfOut = m_dfOut;
      
      //do logging..
      Log();
      
      return(true);
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124

    2.PIDEngine

    在这里插入图片描述
    由图可知,PIDEngine的主要作用就是求解期望的方向舵角rudder、升降舵角elevator以及推进器推力thrust,分别可以控制航向角、俯仰角以及推进速度,在三个自由度上控制AUV,便可以实现AUV的运动控制。
    下面是PIDEngine的主要代码

    //------------------------------------------------------------
    // Procedure: getDesiredRudder求解期望方向舵角
    // Rudder angles are processed in degrees
    
    double PIDEngine::getDesiredRudder(double desired_heading,
    				   double current_heading,
    				   double max_rudder)//期望航向,当前航向,最大方向舵角
    {
      desired_heading = angle180(desired_heading);
      double heading_error = current_heading - desired_heading;
      heading_error = angle180(heading_error);//将舵角转化在-180到180之间
      double desired_rudder = 0;
      m_heading_pid.Run(heading_error, m_current_time, desired_rudder);//使用pid求解方向舵角的值
      desired_rudder *= -1.0;
    
      // Added 4/19 mikerb: monitor and report max saturation events
      m_max_sat_hdg_str.clear();
      m_max_sat_hdg = m_heading_pid.getMaxSat();//检查是否出现输出饱和事件
      if(m_max_sat_hdg)
        m_max_sat_hdg_str = m_heading_pid.getDebugStr();//出现的话输出bug情况
      
      // Enforce limit on desired rudder
      MOOSAbsLimit(desired_rudder,max_rudder);
    
      string rpt = "PID_COURSE: ";
      rpt += " (Want):" + doubleToString(desired_heading);
      rpt += " (Curr):" + doubleToString(current_heading);
      rpt += " (Diff):" + doubleToString(heading_error);
      rpt += " RUDDER:" + doubleToString(desired_rudder);
      m_pid_report.push_back(rpt);
      return(desired_rudder);
    }
    
    //------------------------------------------------------------
    // Procedure: getDesiredThrust
    
    double PIDEngine::getDesiredThrust(double desired_speed, 
    				   double current_speed,
    				   double current_thrust,
    				   double max_thrust)
    {
      double speed_error  = desired_speed - current_speed;
      double delta_thrust = 0;
      double desired_thrust = current_thrust;
    
      // If NOT using PID control, just apply multiple to des_speed
      if(m_speed_factor != 0) {//速度因子不为0,这里假设速度和推力呈线性关系
        desired_thrust = desired_speed * m_speed_factor;
      }
      // ELSE apply the PID contoller to the problem.
      else {//速度因子为0,那么速度和推力采用PID进行计算
        m_speed_pid.Run(speed_error,  m_current_time, delta_thrust);
        desired_thrust += delta_thrust;
    
        // Added 4/19 mikerb: monitor and report max saturation events
        m_max_sat_spd_str.clear();
        m_max_sat_spd = m_speed_pid.getMaxSat();
        if(m_max_sat_spd)
          m_max_sat_spd_str = m_speed_pid.getDebugStr();
      }
      
      if(desired_thrust < 0)
        desired_thrust = 0;
    
      if(m_speed_factor != 0) {
        string rpt = "PID_SPEED: ";
        rpt += " (Want):" + doubleToString(desired_speed);
        rpt += " (Curr):" + doubleToString(current_speed);
        rpt += " (Diff):" + doubleToString(speed_error);
        rpt += " (Fctr):" + doubleToString(m_speed_factor);
        rpt += " THRUST:" + doubleToString(desired_thrust);
        m_pid_report.push_back(rpt);
      }    
      else {
        string rpt = "PID_SPEED: ";
        rpt += " (Want):" + doubleToString(desired_speed);
        rpt += " (Curr):" + doubleToString(current_speed);
        rpt += " (Diff):" + doubleToString(speed_error);
        rpt += " (Delt):" + doubleToString(delta_thrust);
        rpt += " THRUST:" + doubleToString(desired_thrust);
        m_pid_report.push_back(rpt);
      }
    
      // Enforce limit on desired thrust
      MOOSAbsLimit(desired_thrust,max_thrust);
    
      return(desired_thrust);
    }
    
    //------------------------------------------------------------
    // Procedure: getDesiredElevator
    // Elevator angles and pitch are processed in radians
    
    double PIDEngine::getDesiredElevator(double desired_depth,
    				     double current_depth,
    				     double current_pitch,
    				     double max_pitch,
    				     double max_elevator)
    {
      double desired_elevator = 0;
      double desired_pitch = 0;
      double depth_error = current_depth - desired_depth;
      m_z_to_pitch_pid.Run(depth_error, m_current_time, desired_pitch);
      m_max_sat_dep = m_z_to_pitch_pid.getMaxSat();
    
      // Enforce limits on desired pitch
      MOOSAbsLimit(desired_pitch,max_pitch);
    
      double pitch_error = current_pitch - desired_pitch;
      m_pitch_pid.Run(pitch_error, m_current_time, desired_elevator);
      m_max_sat_dep = m_max_sat_dep || m_pitch_pid.getMaxSat();
    
    
      // Added 4/19 mikerb: monitor and report max saturation events
      m_max_sat_dep_str.clear();
      if(m_z_to_pitch_pid.getMaxSat()) {
        m_max_sat_dep = true;
        m_max_sat_dep_str = "Z:" + m_z_to_pitch_pid.getDebugStr();
      }
      if(m_pitch_pid.getMaxSat()) {
        m_max_sat_dep = true;
        m_max_sat_dep_str += "P:" + m_z_to_pitch_pid.getDebugStr();
      }
      
      // Convert desired elevator to degrees
      desired_elevator=MOOSRad2Deg(desired_elevator);
    
      // Enforce elevator limit
      MOOSAbsLimit(desired_elevator,max_elevator);
      
      string rpt = "PID_DEPTH: ";
      rpt += " (Want):" + doubleToString(desired_depth);
      rpt += " (Curr):" + doubleToString(current_depth);
      rpt += " (Diff):" + doubleToString(depth_error);
      rpt += " ELEVATOR:" + doubleToString(desired_elevator);
      m_pid_report.push_back(rpt);
    
      return(desired_elevator);
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139

    上述三个函数具体内容大差不差:
    关于推力,通过PID通过速度偏差计算推力差值,在当前推力的基础上进行加和,求得期望的推力值。
    关于航向角是PID通过航向角偏差直接计算期望方向舵角,对应着现实中方向舵可以直接改变。
    关于升降舵,采用双闭环的计算方式,外环是深度和俯仰角之间的PID计算,内环是俯仰角和升降舵之间的PID计算,最后计算得到期望的升降舵角

    3.MarinePID

    最后一个文件,也是MOOSAPP的主要文件,其中包含着PID计算过程及其bug报告的相关内容。
    其主要作用就是从MOOSDB里订阅需要的AUV当前航速、航向、深度等变量,经过计算之后,再发布出AUV期望的推力、方向舵、升降舵等相关变量。并且对PID计算中的各种限幅进行了输入。

    //--------------------------------------------------------------------
    // Procedure: Iterate()
    
    bool MarinePID::Iterate()
    {
      m_iteration++;//循环次数 初始值为0
      postCharStatus();
    
      if(!m_has_control) {//这个标志代表着手动控制MOOS_MANUAL_OVERIDE的值为false时,m_has_control为true,表示开始自动控制
        postAllStop();//进入手动控制,循环失效
        return(false);
      }
    
      double current_time = MOOSTime();
    
      if(m_verbose == "verbose") {//计算每次进行控制的周期,并进行报告
        double hz = m_iteration / (MOOSTime() - m_start_time);
        cout << endl << endl << endl;
        cout << "PID REPORT: (" << m_iteration << ")";
        cout << "(" << hz << "/sec)" << endl;
      }
    
      if((current_time - m_time_of_last_helm_msg) > m_tardy_helm_thresh) {//当前时间与最近一次收到helm状态(heading、depth、speed)的时间比m_tardy_helm_thresh(2s)大时,说明内部通信有延时。
        if(!m_paused)
          MOOSDebugWrite("Paused Due To Tardy HELM Input: THRUST=0");
        cout << "Paused Due To Tardy HELM Input: THRUST=0" << endl;
        m_paused = true;//延时表示为true
        Notify("DESIRED_THRUST", 0.0);//发布期望推力为0,不对AUV进行控制
        m_current_thrust = 0;
        return(true);
      }
      
      if((current_time - m_time_of_last_nav_msg) > m_tardy_nav_thresh) {//当前时间与最近一次收到NAV状态(NAV_X、NAV_Y等等)的时间比m_tardy_helm_thresh(2s)大时,说明内部通信有延时。
        if(!m_paused)
          MOOSDebugWrite("Paused Due To Tardy NAV Input: THRUST=0");
        cout << "Paused Due To Tardy NAV Input: THRUST=0" << endl;
        m_paused = true;//延迟标志位置为true
        Notify("DESIRED_THRUST", 0.0);
        m_current_thrust = 0;
        return(true);
      }
    
      double rudder = 0;
      double thrust = 0;
      double elevator = 0;
    
      m_pengine.updateTime(current_time);//给m_pengine的currenttime赋值
    
      rudder = m_pengine.getDesiredRudder(m_desired_heading, m_current_heading, 
    				    m_max_rudder);//计算期望方向舵
      
      //--------------------//以下情况针对方向舵板不太稳定的情况
      //对方向舵角进行微调,根据两次计算的时间间隔不同,分为两种情况
      double rbias_duration = current_time - m_rudder_bias_timestamp;
      if(rbias_duration > m_rudder_bias_duration) {//时间间隔大于预设时间
        rbias_duration = 0;
        m_rudder_bias_timestamp = current_time;
        m_rudder_bias_side *= -1;//减少一下调节幅度
      }
      double pct = rbias_duration / m_rudder_bias_duration;//按照规定时间间隔比例增加或减小一定的舵板调节角度
      double bias = m_rudder_bias_side * (pct * m_rudder_bias_limit);//m_rudder_bias_limit该变量表示舵板轻微的晃动幅度
      rudder += bias;
      //--------------------
      
    
      thrust = m_pengine.getDesiredThrust(m_desired_speed, m_current_speed, 
    				    m_current_thrust, m_max_thrust);//计算期望推力
    
    
      if(m_depth_control)
        elevator = m_pengine.getDesiredElevator(m_desired_depth, m_current_depth,
    					  m_current_pitch, m_max_pitch, 
    					  m_max_elevator);//计算期望方升降舵
      
      if((m_desired_speed <= 0.001) && (m_desired_speed >= -0.001))//速度过小时视为0
        thrust = 0;
    
      vector<string> pid_report;
      if(m_verbose == "verbose") {//详细汇报PID计算情况
        pid_report = m_pengine.getPIDReport();
        for(unsigned int i=0; i<pid_report.size(); i++)
          cout << pid_report[i] << endl;
      }
      m_pengine.clearReport();
    
      m_paused = false;//延迟标志位置为false
    
      if(thrust ==0)//推力为0时,方向舵角也为0
        rudder = 0;
      Notify("DESIRED_RUDDER", rudder);
      Notify("DESIRED_THRUST", thrust);
      m_current_thrust = thrust;
      if(m_depth_control)
        Notify("DESIRED_ELEVATOR", elevator);
    
      m_allstop_posted = false;
    
      // Added April 2019 by mikerb
      // Simple quick check if max saturation event occurred
      // If so, and debug was turned on, report debug info for the event
      if(m_pengine.getMaxSatHdg()) {//针对PID超调情况,进行查看
        Notify("PID_MAX_SAT_HDG", "true");
        string debug_info = m_pengine.getMaxSatHdgStr();
        if(debug_info != "")
          Notify("PID_MAX_SAT_HDG_DEBUG", debug_info);
      }
      if(m_pengine.getMaxSatSpd()) {
        Notify("PID_MAX_SAT_SPD", "true");
        string debug_info = m_pengine.getMaxSatSpdStr();
        if(debug_info != "")
          Notify("PID_MAX_SAT_SPD_DEBUG", debug_info);
      }
      if(m_pengine.getMaxSatDep()) {
        Notify("PID_MAX_SAT_DEp", "true");
        string debug_info = m_pengine.getMaxSatDepStr();
        if(debug_info != "")
          Notify("PID_MAX_SAT_DEP_DEBUG", debug_info);
      }
      
      return(true);
    }
      
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122

    总结

    本节基本上对pMarinePID的架构有了一个较为清晰的说明,重点注释了一下三个程序文件中的主要函数,并且对三个自由度控制方式进行了讲解,总体上梳理了MOOS-IVP自带的较常见的控制方法。

  • 相关阅读:
    YOLOv5算法进阶改进(5)— 主干网络中引入SCConv | 即插即用的空间和通道维度重构卷积
    HarmonyOS鸿蒙原生应用开发设计- 图标库
    yolox
    iOS Facebook SDK 安装
    云南美食介绍 简单静态HTML网页作品 美食餐饮网站设计与实现 学生美食网站模板
    huggingface使用bert
    【go从入门到精通】常用标准库的用法
    ESP32-C3入门教程 IoT篇⑦——微软云 Microsoft Azure 物联网 IoT 中心 EspAzureIoT 实战
    Spring实例化源码解析之ConfigurationClassParser(三)
    户外LED大屏推广的精确受众分析-华媒舍
  • 原文地址:https://blog.csdn.net/weixin_44151170/article/details/125432949