• DBNN实验进展


    1. Precsion,Recall,f1_scorem

    precision of mbnn is 0.8756 recall of mbnn is 0.8670 f1_score of mbnn is 0.8689 

    precision of cnn is 0.8952 recall of cnn is 0.8943 f1_score of cnn is 0.8946

    precision of mbnnst is 0.8835 recall of mbnnst is 0.8847 f1_score of mbnnst is 0.8835 

    2.混淆矩阵

    各模型的混淆矩阵
    CNNMBNNMBNNST

    3.各类别准确率

    Precission of each category when using CNN: 0 : 0.8748 1 : 0.8121 2 : 0.9960

    Precission of each category when using MBNN: 0 : 0.8856 1 : 0.7306 2 : 0.9848

    Precission of each category when using MBNNST: 0 : 0.8661 1 : 0.7888 2 : 0.9992

    精度都差不多的情况下,MBNN可以减小推理时间的开销

    4.效率验证

    Average Time of MBNN using cpu for block is 0.4906

    Max Time of MBNN using cpu for block is 0.6025

    Min Time of MBNN using cpu for block is 0.5275

    Average Time of CNN using cpu for block is 0.8985

    Max Time of CNN using cpu for block is 1.0449

    Min Time of CNN using cpu for block is 0.9649

    Average Time of MBNN using cpu for block75 is 0.8868

    Max Time of MBNN using cpu for block75 is 1.0955

    Min Time of MBNN using cpu for block75 is 0.9644 

     

    Average Time of CNN using cpu for block75 is 0.9319

    Max Time of CNN using cpu for block75 is 1.1225

    Min Time of CNN using cpu for block75 is 0.9826

    Average Time of MBNN using cpu for common is 0.8949

    Max Time of MBNN using cpu for common is 1.0635

    Min Time of MBNN using cpu for common is 0.9661 

     

    Average Time of CNN using cpu for common is 0.9518

    Max Time of CNN using cpu for common is 1.1473

    Min Time of CNN using cpu for common is 0.9678

    分析一下,就模型MBNN而言,确实block的情况推理时间走的简单分支,相较common、block0.75的情况,就推理时间而言,自然就减小了许多

    如何解释第二分支下的推理时间减少呢?与天放交流一下下,交流完毕,完全有可能是误差,因为这个时间差别不大

    矩形代表平均值,上面这个工字型代表最大值与最小值的区间

     

     

    实验主要就做

    不同模型推理速度的对比

    模型精度的提升/混淆矩阵

    不同平台下的推理速度对比

    代码存在的问题没有添加Other逻辑

  • 相关阅读:
    李沐大神动手学深度学习——学习笔记(连载)
    window搭建本地mongo数据库并导入数据
    在 10 分钟内在 Remix (React) 中实现单点登录
    记录一个HttpClient超时连接配置不生效的问题排查过程
    并发容器(Map、List、Set)实战及其原理
    go, 随机实例化xml (2)
    hive安装步骤
    目标检测2——借Detectron2源码理解Anchors与RPN
    RabbitMQ顺序性、可靠性、重复消费、消息堆积解决方案
    亚马逊云科技通过生成式AI,帮助清华RIOS加速计算和分析的处理效率
  • 原文地址:https://blog.csdn.net/weixin_43332715/article/details/125478962