条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条.带误差的条形图可以通过误差线来判断显著性。
继续使用我们的汽车销售数据(公众号回复:汽车销售,可以获得该数据)来演示,先导入数据
library(foreign)
library(ggplot2)
library(tidyverse)
bc <- read.spss("E:/r/test/tree_car.sav",
use.value.labels=F, to.data.frame=T)
names(bc)
我们来看下数据,car就是汽车售价,age是年龄,gender是性别,inccat是收入,这里分成4个等级,ed是教育程度。
假设我们想知道不同教育水平的男女在买汽车的价格上有什么不同,可绘制带误差和可信区间的折线图,关键就是要算出它的标准误se和95%ci.
我们先生成一个计算标准误se和95%ci的自定义函数,这是国外一位大佬设计的函数,我见好用直接搬运过来了。
summarySE <- function(data=NULL, measurevar, groupvars=NULL, na.rm=FALSE,
conf.interval=.95, .drop=TRUE) {
library(plyr)
# New version of length which can handle NA's: if na.rm==T, don't count them
length2 <- function (x, na.rm=FALSE) {
if (na.rm) sum(!is.na(x))
else length(x)
}
# This does the summary. For each group's data frame, return a vector with
# N, mean, and sd
datac <- ddply(data, groupvars, .drop=.drop,
.fun = function(xx, col) {
c(N = length2(xx[[col]], na.rm=na.rm),
mean = mean (xx[[col]], na.rm=na.rm),
sd = sd (xx[[col]], na.rm=na.rm)
)
},
measurevar
)
# Rename the "mean" column
datac <- rename(datac, c("mean" = measurevar))
datac$se <- datac$sd / sqrt(datac$N) # Calculate standard error of the mean
# Confidence interval multiplier for standard error
# Calculate t-statistic for confidence interval:
# e.g., if conf.interval is .95, use .975 (above/below), and use df=N-1
ciMult <- qt(conf.interval/2 + .5, datac$N-1)
datac$ci <- datac$se * ciMult
return(datac)
}
生成函数后,我们使用自定义函数summarySE生成标准误se和95%ci. Measurevar填入你要衡量比较的指标,这里填入汽车售价,groupvars这里填入性别和教育程度。
carss<- summarySE(bc, measurevar="car", groupvars=c("gender","ed"))
生成了我们需要的做图数据
画条形图和画折线图不同的是,教育这个指标我们要转换成分类变量
carss$ed <- factor(carss$ed)
转换好以后就可以做图了,先做一个带误差线的
ggplot(carss, aes(x=ed, y=car, fill=gender)) +
geom_bar(position=position_dodge(), stat="identity") +
geom_errorbar(aes(ymin=car-se, ymax=car+se),
width=.2, # Width of the error bars
position=position_dodge(.9))
画个带置信区间的
ggplot(carss, aes(x=ed, y=car, fill=gender)) +
geom_bar(position=position_dodge(), stat="identity") +
geom_errorbar(aes(ymin=car-ci, ymax=car+ci),
width=.2, # Width of the error bars
position=position_dodge(.9))
进行美化一下,一个可以用于发表的图就做成了
如何利用置信区间来判断显著性
(图片来自于淼科学网博客。https://blog.sciencenet.cn/blog-430956-717889.html)