答案在中文题目处展示,仅供参考,不一定是正确答案。如有错误,欢迎评论区指出。
·AI runs on computers and is thus powered by electricity, but it is letting computers do things not possible before.
·AI is powering personal devices in our homes and offices, similar to electricity.
·Through the “smart grid”, AI is delivering a new wave of electricity.
·Similar to electricity starting about 100 years ago, AI is transforming multiple industries.
·People were afraid of a machine rebellion
·The theoretical tools didn’t exist during the 80’s
·Interesting applications such as image recognition require large amounts of data that were not available.
·Limited computational power.
·It is faster to train on a big dataset than a small dataset.
·Being able to tny out ideas quicdly llos deep learming engineers to iterate more quicky.
·Faster computation can help speed up how long a team takes to iterate to a good idea.
·Recent progress in deep learning algorithms has allowed us to train good models faster (even without changing the CPU/GPU hardware).
·False
·True
·True
Yes. The data can be represented by columns of data. This is an example of structured data.unlike images of the animal.
·False
No. The data can be represented by columns of data. This is an example of structured data.unlike images of the animal.
·False
·True
·RNNs represent the recurrent process of ldea->Code->Experiment->ldea->……
·It can be trained as a supervised learning problem.
·It is applicable when the input/output is a sequence (eg- a sequence of words).
·It is strictly more powerful than a Convolutional Neural Network (CNN).
·False
·True
·Increasing the training set size of a traditional learning algorithm always improves its performance.
·Increasing the size of a neural network generally does not hurt an algorithm’s performance, and it may help signifcantly.
·Decreasing the training set size generally does not hurt an algorithm’s performance. and it may help significantly.
·Increasing the training set size of a traditional learning algorithm stops helping to improve the performance after a certain size.
()AI在计算机上运行,并由电力驱动,但是它正在让以前的计算机不能做的事情变为可能
()AI为我们的家庭和办公室的个人设备供电,类似于电力。
()通过“智能电网”,AI提供新的电能。
(√)就像100年前产生电能一样,AI正在改变很多的行业。
() 人们害怕机器造反。
()理论根据在80年还不存在。
(√) 有趣的应用程序,如图像识别,需要大量数据,但还无法获取足够的数据。
()计算能力有限。
()在大数据集上训练上的时间要快于小数据集。
(√)能够让深度学习工程师快速地实现自己的想法。
(√)在更好更快的计算机上能够帮助一个团队减少迭代(训练)的时间。
(√) 使用更新的深度学习算法可以使我们能够更快地训练好模型(即使更换CPU / GPU硬件)。
()正确
(√)错误
这些图中的哪一个表示ReLU激活功能?
()Figure 1:
(√)Figure 3:
()Figure 2:
()Figure 4:
动物的特征,如体重、身高和颜色,被用来区分猫、狗或其他动物。这是“结构化”数据的一个例子,因为它们在计算机中被表示为数组。对/错?
(√)对
是的,数据可以用数据列表示。这是结构化数据的一个例子。不像动物的图像。
()错
数据可以用数据列表示。这是结构化数据的一个例子。不像动物的图像。
(√)对
()错
()RNNs代表递归过程:想法->编码->实验->想法->…
(√) 因为它可以被用做监督学习。
(√)它比较适合用于当输入/输出是一个序列的时候(例如:一个单词序列)
()严格意义上它比卷积神经网络(CNN)效果更好。
(√)对
() 错
() 增加传统学习算法的训练集大小总是能提高算法的性能。
(√) 增加神经网络的大小通常不会损害算法的性能。这可能会有很大的帮助。
()减少训练集的大小通常不会损害算法的性能,而且可能会有显著的帮助。
(√)对于传统的学习算法,增加训练集的大小到一定的大小后就不再有助于提高性能。