• 【机器学习】线性回归预测


    前言

    回归分析就是用于预测输入变量(自变量)和输出变量(因变量)之间的关系,特别当输入的值发生变化时,输出变量值也发生改变!回归简单来说就是对数据进行拟合。线性回归就是通过线性的函数对数据进行拟合。机器学习并不能实现预言,只能实现简单的预测。我们这次对房价关于其他因素的关系。

    波士顿房价预测

    下载相关数据集

    • 数据集是506行14列的波士顿房价数据集,数据集是开源的。
    复制代码
    • 1
    • 2
    • 3
    er-hljs
    wget.download(url='https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data',out= 'housing.data') wget.download(url='https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.names',out='housing.names') wget.download(url='https://archive.ics.uci.edu/ml/machine-learning-databases/housing/Index',out='Index')

    对数据集进行处理

    复制代码
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    er-hljs
    feature_names = ['CRIM','ZN','INDUS','CHAS','NOX','RM','AGE','DIS','RAD','TAX','PTRATIO','B','LSTAT','MEDV'] feature_num = len(feature_names) print(feature_num) # 把7084 变为506*14 housing_data = housing_data.reshape(housing_data.shape[0]//feature_num,feature_num) print(housing_data.shape[0]) # 打印第一行数据 print(housing_data[:1]) ## 归一化 feature_max = housing_data.max(axis=0) feature_min = housing_data.min(axis=0) feature_avg = housing_data.sum(axis=0)/housing_data.shape[0]

    模型定义

    复制代码
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    er-hljs
    ## 实例化模型 def Model(): model = linear_model.LinearRegression() return model # 拟合模型 def train(model,x,y): model.fit(x,y)

    可视化模型效果

    复制代码
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    er-hljs
    def draw_infer_result(groud_truths,infer_results): title = 'Boston' plt.title(title,fontsize=24) x = np.arange(1,40) y = x plt.plot(x,y) plt.xlabel('groud_truth') plt.ylabel('infer_results') plt.scatter(groud_truths,infer_results,edgecolors='green',label='training cost') plt.grid() plt.show()

    整体代码

    复制代码
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    er-hljs
    ## 基于线性回归实现房价预测 ## 拟合函数模型 ## 梯度下降方法 ## 开源房价策略数据集 import wget import numpy as np import os import matplotlib import matplotlib.pyplot as plt import pandas as pd from sklearn import linear_model ## 下载之后注释掉 ''' wget.download(url='https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data',out= 'housing.data') wget.download(url='https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.names',out='housing.names') wget.download(url='https://archive.ics.uci.edu/ml/machine-learning-databases/housing/Index',out='Index') ''' ''' 1. CRIM per capita crime rate by town 2. ZN proportion of residential land zoned for lots over 25,000 sq.ft. 3. INDUS proportion of non-retail business acres per town 4. CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise) 5. NOX nitric oxides concentration (parts per 10 million) 6. RM average number of rooms per dwelling 7. AGE proportion of owner-occupied units built prior to 1940 8. DIS weighted distances to five Boston employment centres 9. RAD index of accessibility to radial highways 10. TAX full-value property-tax rate per $10,000 11. PTRATIO pupil-teacher ratio by town 12. B 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town 13. LSTAT % lower status of the population 14. MEDV Median value of owner-occupied homes in $1000's ''' ## 数据加载 datafile = './housing.data' housing_data = np.fromfile(datafile,sep=' ') print(housing_data.shape) feature_names = ['CRIM','ZN','INDUS','CHAS','NOX','RM','AGE','DIS','RAD','TAX','PTRATIO','B','LSTAT','MEDV'] feature_num = len(feature_names) print(feature_num) # 把7084 变为506*14 housing_data = housing_data.reshape(housing_data.shape[0]//feature_num,feature_num) print(housing_data.shape[0]) # 打印第一行数据 print(housing_data[:1]) ## 归一化 feature_max = housing_data.max(axis=0) feature_min = housing_data.min(axis=0) feature_avg = housing_data.sum(axis=0)/housing_data.shape[0] def feature_norm(input): f_size = input.shape output_features = np.zeros(f_size,np.float32) for batch_id in range(f_size[0]): for index in range(13): output_features[batch_id][index] = (input[batch_id][index]-feature_avg[index])/(feature_max[index]-feature_min[index]) return output_features housing_features = feature_norm(housing_data[:,:13]) housing_data = np.c_[housing_features,housing_data[:,-1]].astype(np.float32) ## 划分数据集 8:2 ratio =0.8 offset = int(housing_data.shape[0]*ratio) train_data = housing_data[:offset] test_data = housing_data[offset:] print(train_data[:2]) ## 模型配置 ## 线性回归 ## 实例化模型 def Model(): model = linear_model.LinearRegression() return model # 拟合模型 def train(model,x,y): model.fit(x,y) ## 模型训练 X, y = train_data[:,:13], train_data[:,-1:] model = Model() train(model,X,y) x_test, y_test = test_data[:,:13], test_data[:,-1:] prefict = model.predict(x_test) ## 模型评估 infer_results = [] groud_truths = [] def draw_infer_result(groud_truths,infer_results): title = 'Boston' plt.title(title,fontsize=24) x = np.arange(1,40) y = x plt.plot(x,y) plt.xlabel('groud_truth') plt.ylabel('infer_results') plt.scatter(groud_truths,infer_results,edgecolors='green',label='training cost') plt.grid() plt.show() draw_infer_result(y_test,prefict)

    效果展示

    image

    总结

    线性回归预测还是比较简单的,可以简单理解为函数拟合,数据集是使用的开源的波士顿房价的数据集,算法也是打包好的包,方便我们引用。

  • 相关阅读:
    2023年【电工(技师)】试题及解析及电工(技师)模拟考试题
    (后续补充)vue+express、gitee pm2部署轻量服务器
    vue 分页器组件+css动画效果
    睿趣科技:未来抖音开网店还有前景吗
    SpringMVC获取表单页面参数的几种方式
    初步了解进程、进程调度的基本属性、进程间通信
    AutoJs学习-2048全自动
    如何设置Linux的语言环境
    【干货技巧】最新 Java 后端面试系列干货,都在这了!
    openmmlab 教程1-安装
  • 原文地址:https://www.cnblogs.com/hjk-airl/p/16405474.html