• 手写一个线程池,带你学习ThreadPoolExecutor线程池实现原理


    摘要:从手写线程池开始,逐步的分析这些代码在Java的线程池中是如何实现的。

    本文分享自华为云社区《手写线程池,对照学习ThreadPoolExecutor线程池实现原理!》,作者:小傅哥。

    谢飞机,小记!,上次吃亏在线程上,这可能一次坑掉两次吗!

    谢飞机:你问吧,我准备好了!!!

    面试官:嗯,线程池状态是如何设计存储的?

    谢飞机:这!下一个,下一个!

    面试官:Worker 的实现类,为什么不使用 ReentrantLock 来实现呢,而是自己继承AQS?

    谢飞机:我…!

    面试官:那你简述下,execute 的执行过程吧!

    谢飞机:再见!

    一、线程池讲解

    1. 先看个例子

    复制代码
    ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(10, 10, 0L, TimeUnit.MILLISECONDS, new ArrayBlockingQueue<>(10));
    threadPoolExecutor.execute(() -> {
        System.out.println("Hi 线程池!");
    });
    threadPoolExecutor.shutdown();
    
    // Executors.newFixedThreadPool(10);
    // Executors.newCachedThreadPool();
    // Executors.newScheduledThreadPool(10);
    // Executors.newSingleThreadExecutor();
    复制代码

    这是一段用于创建线程池的例子,相信你已经用了很多次了。

    线程池的核心目的就是资源的利用,避免重复创建线程带来的资源消耗。因此引入一个池化技术的思想,避免重复创建、销毁带来的性能开销。

    那么,接下来我们就通过实践的方式分析下这个池子的构造,看看它是如何处理线程的。

    2. 手写一个线程池

    2.1 实现流程

    为了更好的理解和分析关于线程池的源码,我们先来按照线程池的思想,手写一个非常简单的线程池。

    其实很多时候一段功能代码的核心主逻辑可能并没有多复杂,但为了让核心流程顺利运行,就需要额外添加很多分支的辅助流程。就像我常说的,为了保护手才把擦屁屁纸弄那么大!

    关于图 21-1,这个手写线程池的实现也非常简单,只会体现出核心流程,包括:

    1. 有n个一直在运行的线程,相当于我们创建线程池时允许的线程池大小。
    2. 把线程提交给线程池运行。
    3. 如果运行线程池已满,则把线程放入队列中。
    4. 最后当有空闲时,则获取队列中线程进行运行。

    2.2 实现代码

    复制代码
    public class ThreadPoolTrader implements Executor {
    
        private final AtomicInteger ctl = new AtomicInteger(0);
    
        private volatile int corePoolSize;
        private volatile int maximumPoolSize;
    
        private final BlockingQueue<Runnable> workQueue;
    
        public ThreadPoolTrader(int corePoolSize, int maximumPoolSize, BlockingQueue<Runnable> workQueue) {
            this.corePoolSize = corePoolSize;
            this.maximumPoolSize = maximumPoolSize;
            this.workQueue = workQueue;
        }
    
        @Override
        public void execute(Runnable command) {
            int c = ctl.get();
            if (c < corePoolSize) {
                if (!addWorker(command)) {
                    reject();
                }
                return;
            }
            if (!workQueue.offer(command)) {
                if (!addWorker(command)) {
                    reject();
                }
            }
        }
    
        private boolean addWorker(Runnable firstTask) {
            if (ctl.get() >= maximumPoolSize) return false;
    
            Worker worker = new Worker(firstTask);
            worker.thread.start();
            ctl.incrementAndGet();
            return true;
        }
    
        private final class Worker implements Runnable {
    
            final Thread thread;
            Runnable firstTask;
    
            public Worker(Runnable firstTask) {
                this.thread = new Thread(this);
                this.firstTask = firstTask;
            }
    
            @Override
            public void run() {
                Runnable task = firstTask;
                try {
                    while (task != null || (task = getTask()) != null) {
                        task.run();
                        if (ctl.get() > maximumPoolSize) {
                            break;
                        }
                        task = null;
                    }
                } finally {
                    ctl.decrementAndGet();
                }
            }
    
            private Runnable getTask() {
                for (; ; ) {
                    try {
                        System.out.println("workQueue.size:" + workQueue.size());
                        return workQueue.take();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        }
    
        private void reject() {
            throw new RuntimeException("Error!ctl.count:" + ctl.get() + " workQueue.size:" + workQueue.size());
        }
    
        public static void main(String[] args) {
            ThreadPoolTrader threadPoolTrader = new ThreadPoolTrader(2, 2, new ArrayBlockingQueue<Runnable>(10));
    
            for (int i = 0; i < 10; i++) {
                int finalI = i;
                threadPoolTrader.execute(() -> {
                    try {
                        Thread.sleep(1500);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    System.out.println("任务编号:" + finalI);
                });
            }
        }
    
    }
    
    // 测试结果
    
    任务编号:1
    任务编号:0
    workQueue.size:8
    workQueue.size:8
    任务编号:3
    workQueue.size:6
    任务编号:2
    workQueue.size:5
    任务编号:5
    workQueue.size:4
    任务编号:4
    workQueue.size:3
    任务编号:7
    workQueue.size:2
    任务编号:6
    workQueue.size:1
    任务编号:8
    任务编号:9
    workQueue.size:0
    workQueue.size:0
    复制代码

    以上,关于线程池的实现还是非常简单的,从测试结果上已经可以把最核心的池化思想体现出来了。主要功能逻辑包括:

    • ctl,用于记录线程池中线程数量。
    • corePoolSize、maximumPoolSize,用于限制线程池容量。
    • workQueue,线程池队列,也就是那些还不能被及时运行的线程,会被装入到这个队列中。
    • execute,用于提交线程,这个是通用的接口方法。在这个方法里主要实现的就是,当前提交的线程是加入到worker、队列还是放弃。
    • addWorker,主要是类 Worker 的具体操作,创建并执行线程。这里还包括了 getTask() 方法,也就是从队列中不断的获取未被执行的线程。

    好,那么以上呢,就是这个简单线程池实现的具体体现。但如果深思熟虑就会发现这里需要很多完善,比如:线程池状态呢,不可能一直奔跑呀!?、线程池的锁呢,不会有并发问题吗?、线程池拒绝后的策略呢?,这些问题都没有在主流程解决,也正因为没有这些流程,所以上面的代码才更容易理解。

    接下来,我们就开始分析线程池的源码,与我们实现的简单线程池参考对比,会更加容易理解 !

    3. 线程池源码分析

    3.1 线程池类关系图

    以围绕核心类 ThreadPoolExecutor 的实现展开的类之间实现和继承关系,如图 21-2 线程池类关系图。

    • 接口 Executor、ExecutorService,定义线程池的基本方法。尤其是 execute(Runnable command) 提交线程池方法。
    • 抽象类 AbstractExecutorService,实现了基本通用的接口方法。
    • ThreadPoolExecutor,是整个线程池最核心的工具类方法,所有的其他类和接口,为围绕这个类来提供各自的功能。
    • Worker,是任务类,也就是最终执行的线程的方法。
    • RejectedExecutionHandler,是拒绝策略接口,有四个实现类;AbortPolicy(抛异常方式拒绝)、DiscardPolicy(直接丢弃)、DiscardOldestPolicy(丢弃存活时间最长的任务)、CallerRunsPolicy(谁提交谁执行)。
    • Executors,是用于创建我们常用的不同策略的线程池,newFixedThreadPool、newCachedThreadPool、newScheduledThreadPool、newSingleThreadExecutor。

    3.2 高3位与低29位

    复制代码
    private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
    private static final int COUNT_BITS = Integer.SIZE - 3;
    private static final int CAPACITY   = (1 << COUNT_BITS) - 1;
    
    private static final int RUNNING    = -1 << COUNT_BITS;
    private static final int SHUTDOWN   =  0 << COUNT_BITS;
    private static final int STOP       =  1 << COUNT_BITS;
    private static final int TIDYING    =  2 << COUNT_BITS;
    private static final int TERMINATED =  3 << COUNT_BITS;
    复制代码

    在 ThreadPoolExecutor 线程池实现类中,使用 AtomicInteger 类型的 ctl 记录线程池状态和线程池数量。在一个类型上记录多个值,它采用的分割数据区域,高3位记录状态,低29位存储线程数量,默认 RUNNING 状态,线程数为0个。

    3.2 线程池状态

    图 22-4 是线程池中的状态流转关系,包括如下状态:

    • RUNNING:运行状态,接受新的任务并且处理队列中的任务。
    • SHUTDOWN:关闭状态(调用了shutdown方法)。不接受新任务,,但是要处理队列中的任务。
    • STOP:停止状态(调用了shutdownNow方法)。不接受新任务,也不处理队列中的任务,并且要中断正在处理的任务。
    • TIDYING:所有的任务都已终止了,workerCount为0,线程池进入该状态后会调 terminated() 方法进入TERMINATED 状态。
    • TERMINATED:终止状态,terminated() 方法调用结束后的状态。

    3.3 提交线程(execute)

    复制代码
    public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        int c = ctl.get();
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        else if (!addWorker(command, false))
            reject(command);
    }
    复制代码

    在阅读这部分源码的时候,可以参考我们自己实现的线程池。其实最终的目的都是一样的,就是这段被提交的线程,启动执行、加入队列、决策策略,这三种方式。

    • ctl.get(),取的是记录线程状态和线程个数的值,最终需要使用方法 workerCountOf(),来获取当前线程数量。`workerCountOf 执行的是 c & CAPACITY 运算
    • 根据当前线程池中线程数量,与核心线程数 corePoolSize 做对比,小于则进行添加线程到任务执行队列。
    • 如果说此时线程数已满,那么则需要判断线程池是否为运行状态 isRunning(c)。如果是运行状态则把不能被执行的线程放入线程队列中。
    • 放入线程队列以后,还需要重新判断线程是否运行以及移除操作,如果非运行且移除,则进行拒绝策略。否则判断线程数量为0后添加新线程。
    • 最后就是再次尝试添加任务执行,此时方法 addWorker 的第二个入参是 false,最终会影响添加执行任务数量判断。如果添加失败则进行拒绝策略。

    3.5 添加执行任务(addWorker)

    private boolean addWorker(Runnable firstTask, boolean core)

    第一部分、增加线程数量

    复制代码
    retry:
    for (;;) {
        int c = ctl.get();
        int rs = runStateOf(c);
        // Check if queue empty only if necessary.
        if (rs >= SHUTDOWN &&
            ! (rs == SHUTDOWN &&
               firstTask == null &&
               ! workQueue.isEmpty()))
            return false;
        for (;;) {
            int wc = workerCountOf(c);
            if (wc >= CAPACITY ||
                wc >= (core ? corePoolSize : maximumPoolSize))
                return false;
            if (compareAndIncrementWorkerCount(c))
                break retry;
            c = ctl.get();  // Re-read ctl
            if (runStateOf(c) != rs)
                continue retry;
            // else CAS failed due to workerCount change; retry inner loop
        }
    }
    复制代码

    第一部分、创建启动线程

    复制代码
    boolean workerStarted = false;
    boolean workerAdded = false;
    Worker w = null;
    try {
        w = new Worker(firstTask);
        final Thread t = w.thread;
        if (t != null) {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                int rs = runStateOf(ctl.get());
                if (rs < SHUTDOWN ||
                    (rs == SHUTDOWN && firstTask == null)) {
                    if (t.isAlive()) // precheck that t is startable
                        throw new IllegalThreadStateException();
                    workers.add(w);
                    int s = workers.size();
                    if (s > largestPoolSize)
                        largestPoolSize = s;
                    workerAdded = true;
                }
            } finally {
                mainLock.unlock();
            }
            if (workerAdded) {
                t.start();
                workerStarted = true;
            }
        }
    } finally {
        if (! workerStarted)
            addWorkerFailed(w);
    }
    return workerStarted;
    复制代码

    添加执行任务的流程可以分为两块看,上面代码部分是用于记录线程数量、下面代码部分是在独占锁里创建执行线程并启动。这部分代码在不看锁、CAS等操作,那么就和我们最开始手写的线程池基本一样了

    • if (rs >= SHUTDOWN &&! (rs == SHUTDOWN &&firstTask == null &&! workQueue.isEmpty())),判断当前线程池状态,是否为 SHUTDOWN、STOP、TIDYING、TERMINATED中的一个。并且当前状态为 SHUTDOWN、且传入的任务为 null,同时队列不为空。那么就返回 false。
    • compareAndIncrementWorkerCount,CAS 操作,增加线程数量,成功就会跳出标记的循环体。
    • runStateOf(c) != rs,最后是线程池状态判断,决定是否循环。
    • 在线程池数量记录成功后,则需要进入加锁环节,创建执行线程,并记录状态。在最后如果判断没有启动成功,则需要执行 addWorkerFailed 方法,剔除到线程方法等操作。

    3.6 执行线程(runWorker)

    复制代码
    final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // 允许中断
        boolean completedAbruptly = true;
        try {
            while (task != null || (task = getTask()) != null) 
                w.lock();
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    wt.interrupt();
                try {
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        task.run();
                    } finally {
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
                    w.completedTasks++;
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
            processWorkerExit(w, completedAbruptly);
        }
    }
    复制代码

    其实,有了手写线程池的基础,到这也就基本了解了,线程池在干嘛。到这最核心的点就是 task.run() 让线程跑起来。额外再附带一些其他流程如下;

    • beforeExecute、afterExecute,线程执行的前后做一些统计信息。
    • 另外这里的锁操作是 Worker 继承 AQS 自己实现的不可重入的独占锁。
    • processWorkerExit,如果你感兴趣,类似这样的方法也可以深入了解下。在线程退出时候workers做到一些移除处理以及完成任务数等,也非常有意思

    3.7 队列获取任务(getTask)

    如果你已经开始阅读源码,可以在 runWorker 方法中,看到这样一句循环代码 while (task != null || (task = getTask()) != null)。这与我们手写线程池中操作的方式是一样的,核心目的就是从队列中获取线程方法。

    复制代码
    private Runnable getTask() {
        boolean timedOut = false; // Did the last poll() time out?
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);
            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                decrementWorkerCount();
                return null;
            }
            int wc = workerCountOf(c);
            // Are workers subject to culling?
            boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
            if ((wc > maximumPoolSize || (timed && timedOut))
                && (wc > 1 || workQueue.isEmpty())) {
                if (compareAndDecrementWorkerCount(c))
                    return null;
                continue;
            }
            try {
                Runnable r = timed ?
                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                    workQueue.take();
                if (r != null)
                    return r;
                timedOut = true;
            } catch (InterruptedException retry) {
                timedOut = false;
            }
        }
    }
    复制代码
    • getTask 方法从阻塞队列中获取等待被执行的任务,也就是一条条往出拿线程方法。
    • if (rs >= SHUTDOWN ...,判断线程是否关闭。
    • wc = workerCountOf(c),wc > corePoolSize,如果工作线程数超过核心线程数量 corePoolSize 并且 workQueue 不为空,则增加工作线程。但如果超时未获取到线程,则会把大于 corePoolSize 的线程销毁掉。
    • timed,是 allowCoreThreadTimeOut 得来的。最终 timed 为 true 时,则通过阻塞队列的poll方法进行超时控制。
    • 如果在 keepAliveTime 时间内没有获取到任务,则返回null。如果为false,则阻塞。

    二、总结

    • 这一章节并没有完全把线程池的所有知识点都介绍完,否则一篇内容会有些臃肿。在这一章节我们从手写线程池开始,逐步的分析这些代码在Java的线程池中是如何实现的,涉及到的知识点也几乎是我们以前介绍过的内容,包括:队列、CAS、AQS、重入锁、独占锁等内容。所以这些知识也基本是环环相扣的,最好有一些根基否则会有些不好理解。
    • 除了本章介绍的,我们还没有讲到线程的销毁过程、四种线程池方法的选择和使用、以及在CPU密集型任务、IO 密集型任务时该怎么配置。另外在Spring中也有自己实现的线程池方法。这些知识点都非常贴近实际操作。

     

    点击关注,第一时间了解华为云新鲜技术~

  • 相关阅读:
    _Linux进程控制
    二.镜头知识之镜头总长,法兰距,安装接口
    Viewpager2嵌套RecyclerView导致的滑动卡顿
    LogTAD:无监督跨系统日志异常域检测
    基于微服务+Java+Spring Cloud开发的建筑工地智慧平台源码 云平台多端项目源码
    pytest parametrize多参数接口请求及展示中文响应数据
    使用 Python、XML 和 YAML 编写 ROS 2 Launch 文件
    破局存量客群营销,试一下客户分群管理(含聚类模型等实操效果评估)
    Linux 配置Tomcat
    测试基础知识
  • 原文地址:https://www.cnblogs.com/huaweiyun/p/15891375.html