为了编写一个详细的YOLOv8旋转目标检测ONNX部署教程,我们需要考虑几个关键点:模型转换为ONNX格式、ONNX模型的部署以及后处理逻辑。由于YOLOv8本身还未发布,我们将基于现有的知识和技术来进行推断。
以下是部署YOLOv8旋转目标检测模型到ONNX的步骤,包括代码示例。请注意,这只是一个假设性的教程,因为YOLOv8的具体细节尚未公开。
确保安装了以下依赖:
安装所需的库:
pip install torch torchvision opencv-python numpy onnx onnxruntime tqdm
假设你已经有了一个经过训练的YOLOv8旋转目标检测模型,接下来将其转换为ONNX格式。
import torch
import onnx
from onnxsim import simplify
def convert_to_onnx(model, input_size=(640, 640), output_file="yolov8.onnx"):
dummy_input = torch.randn(1, 3, *input_size) # 1 batch, 3 channels, input size
input_names = ["input"]
output_names = ["output"]
torch.onnx.export(
model,
dummy_input,
output_file,
export_params=True,
opset_version=11,
do_constant_folding=True,
input_names=input_names,
output_names=output_names,
dynamic_axes={"input": {0: "batch_size"}, "output": {0: "batch_size"}}
)
print(f"Model has been converted to ONNX format and saved to {output_file}")
# Simplify the ONNX model
onnx_model = onnx.load(output_file)
model_simplified, check = simplify(onnx_model)
assert check, "Simplified ONNX model could not be validated"
onnx.save(model_simplified, output_file)
print(f"Simplified ONNX model saved to {output_file}")
接下来,我们将使用ONNX Runtime来加载和运行ONNX模型。
import cv2
import numpy as np
import onnxruntime
def load_onnx_model(model_path):
sess = onnxruntime.InferenceSession(model_path, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
input_name = sess.get_inputs()[0].name
output_name = sess.get_outputs()[0].name
return sess, input_name, output_name
def preprocess_image(image_path, input_size=(640, 640)):
img = cv2.imread(image_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.resize(img, input_size)
img = img.astype(np.float32)
img /= 255.0
img = np.transpose(img, (2, 0, 1)) # HWC -> CHW
img = np.expand_dims(img, axis=0) # Add batch dimension
return img
def postprocess(output, image_shape, input_size=(640, 640)):
# 假设输出包含旋转框的坐标和角度
detections = output[0]
boxes = detections[:, :5] # x, y, width, height, angle
scores = detections[:, 5]
labels = detections[:, 6]
# 调整检测框到原始图像尺寸
scale_x = image_shape[1] / input_size[1]
scale_y = image_shape[0] / input_size[0]
boxes[:, 0] *= scale_x
boxes[:, 1] *= scale_y
boxes[:, 2] *= scale_x
boxes[:, 3] *= scale_y
return boxes, scores, labels
def detect_rotated_boxes(image_path, sess, input_name, output_name, input_size=(640, 640)):
img = preprocess_image(image_path, input_size)
outputs = sess.run([output_name], {input_name: img})
boxes, scores, labels = postprocess(outputs[0], cv2.imread(image_path).shape, input_size)
return boxes, scores, labels
def visualize(image_path, boxes, scores, labels):
img = cv2.imread(image_path)
for box, score, label in zip(boxes, scores, labels):
x, y, w, h, angle = box
# 使用OpenCV绘制旋转矩形
box_points = cv2.boxPoints(((x, y), (w, h), angle))
box_points = np.int0(box_points)
cv2.drawContours(img, [box_points], 0, (0, 0, 255), 2)
cv2.putText(img, f"{label} {score:.2f}", (int(x), int(y)), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
cv2.imshow("Rotated Object Detection", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
编译和运行
1)编译
cd examples/rknn_yolov8_obb_demo
bash build-linux_RK3588.sh
2)运行
cd install/rknn_yolov8obb_demo_Linux
./rknn_yolov8obb_demo
类别:
CLASSES = ['plane', 'ship', 'storage tank', 'baseball diamond', 'tennis court', 'basketball court',
'ground track field', 'harbor', 'bridge', 'large vehicle', 'small vehicle', 'helicopter', 'roundabout',
'soccer ball field', 'swimming pool']
最后:计算机视觉、图像处理、毕业辅导、作业帮助、代码获取,远程协助,代码定制,私聊会回复!