codegeex2-6b-int4 模型文件
CodeGeeX2 仓库文件地址
CodeGeeX2 推理教程
conda create -n codegeex2 python=3.10 -y
conda activate codegeex2
pip install -r requirements.txt -i https://pypi.mirrors.ustc.edu.cn/simple
python ./demo/run_demo.py
python ./demo/fastapicpu.py
报错
AttributeError: 'ChatGLMTokenizer' object has no attribute 'tokenizer'. Did you mean: 'tokenize'?
解决方法:
用以下代码替换掉tokenization_chatglm.py里面内容
- import os
- import torch
- from typing import List, Optional, Union, Dict
- from sentencepiece import SentencePieceProcessor
- from transformers import PreTrainedTokenizer
- from transformers.utils import logging, PaddingStrategy
- from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
-
-
- class SPTokenizer:
- def __init__(self, model_path: str):
- # reload tokenizer
- assert os.path.isfile(model_path), model_path
- self.sp_model = SentencePieceProcessor(model_file=model_path)
-
- # BOS / EOS token IDs
- self.n_words: int = self.sp_model.vocab_size()
- self.bos_id: int = self.sp_model.bos_id()
- self.eos_id: int = self.sp_model.eos_id()
- self.pad_id: int = self.sp_model.unk_id()
- assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
-
- special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"]
- self.special_tokens = {}
- self.index_special_tokens = {}
- for token in special_tokens:
- self.special_tokens[token] = self.n_words
- self.index_special_tokens[self.n_words] = token
- self.n_words += 1
-
- def tokenize(self, s: str):
- return self.sp_model.EncodeAsPieces(s)
-
- def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]:
- assert type(s) is str
- t = self.sp_model.encode(s)
- if bos:
- t = [self.bos_id] + t
- if eos:
- t = t + [self.eos_id]
- return t
-
- def decode(self, t: List[int]) -> str:
- return self.sp_model.decode(t)
-
- def decode_tokens(self, tokens: List[str]) -> str:
- text = self.sp_model.DecodePieces(tokens)
- return text
-
- def convert_token_to_id(self, token):
- """ Converts a token (str) in an id using the vocab. """
- if token in self.special_tokens:
- return self.special_tokens[token]
- return self.sp_model.PieceToId(token)
-
- def convert_id_to_token(self, index):
- """Converts an index (integer) in a token (str) using the vocab."""
- if index in self.index_special_tokens or index in [self.eos_id, self.bos_id, self.pad_id] or index < 0:
- return ""
- return self.sp_model.IdToPiece(index)
-
-
- class ChatGLMTokenizer(PreTrainedTokenizer):
- vocab_files_names = {"vocab_file": "tokenizer.model"}
-
- model_input_names = ["input_ids", "attention_mask", "position_ids"]
-
- def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False, **kwargs):
- self.name = "GLMTokenizer"
-
- self.vocab_file = vocab_file
- self.tokenizer = SPTokenizer(vocab_file)
- self.special_tokens = {
- "
" : self.tokenizer.bos_id, - "
" : self.tokenizer.eos_id, - "
" : self.tokenizer.pad_id - }
- super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs)
-
- def get_command(self, token):
- if token in self.special_tokens:
- return self.special_tokens[token]
- assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}"
- return self.tokenizer.special_tokens[token]
-
- @property
- def unk_token(self) -> str:
- return "
" -
- @property
- def pad_token(self) -> str:
- return "
" -
- @property
- def pad_token_id(self):
- return self.get_command("
" ) -
- @property
- def eos_token(self) -> str:
- return ""
-
- @property
- def eos_token_id(self):
- return self.get_command("
" ) -
- @property
- def vocab_size(self):
- return self.tokenizer.n_words
-
- def get_vocab(self):
- """ Returns vocab as a dict """
- vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
- vocab.update(self.added_tokens_encoder)
- return vocab
-
- def _tokenize(self, text, **kwargs):
- return self.tokenizer.tokenize(text)
-
- def _convert_token_to_id(self, token):
- """ Converts a token (str) in an id using the vocab. """
- return self.tokenizer.convert_token_to_id(token)
-
- def _convert_id_to_token(self, index):
- """Converts an index (integer) in a token (str) using the vocab."""
- return self.tokenizer.convert_id_to_token(index)
-
- def convert_tokens_to_string(self, tokens: List[str]) -> str:
- return self.tokenizer.decode_tokens(tokens)
-
- def save_vocabulary(self, save_directory, filename_prefix=None):
- """
- Save the vocabulary and special tokens file to a directory.
- Args:
- save_directory (`str`):
- The directory in which to save the vocabulary.
- filename_prefix (`str`, *optional*):
- An optional prefix to add to the named of the saved files.
- Returns:
- `Tuple(str)`: Paths to the files saved.
- """
- if os.path.isdir(save_directory):
- vocab_file = os.path.join(
- save_directory, self.vocab_files_names["vocab_file"]
- )
- else:
- vocab_file = save_directory
-
- with open(self.vocab_file, 'rb') as fin:
- proto_str = fin.read()
-
- with open(vocab_file, "wb") as writer:
- writer.write(proto_str)
-
- return (vocab_file,)
-
- def get_prefix_tokens(self):
- prefix_tokens = [self.get_command("[gMASK]"), self.get_command("sop")]
- return prefix_tokens
-
- def build_prompt(self, query, history=None):
- if history is None:
- history = []
- prompt = ""
- for i, (old_query, response) in enumerate(history):
- prompt += "[Round {}]\n\n问:{}\n\n答:{}\n\n".format(i + 1, old_query, response)
- prompt += "[Round {}]\n\n问:{}\n\n答:".format(len(history) + 1, query)
- return prompt
-
- def build_inputs_with_special_tokens(
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
- ) -> List[int]:
- """
- Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
- adding special tokens. A BERT sequence has the following format:
- - single sequence: `[CLS] X [SEP]`
- - pair of sequences: `[CLS] A [SEP] B [SEP]`
- Args:
- token_ids_0 (`List[int]`):
- List of IDs to which the special tokens will be added.
- token_ids_1 (`List[int]`, *optional*):
- Optional second list of IDs for sequence pairs.
- Returns:
- `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
- """
- prefix_tokens = self.get_prefix_tokens()
- token_ids_0 = prefix_tokens + token_ids_0
- if token_ids_1 is not None:
- token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("
" )] - return token_ids_0
-
- def _pad(
- self,
- encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
- max_length: Optional[int] = None,
- padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
- pad_to_multiple_of: Optional[int] = None,
- return_attention_mask: Optional[bool] = None,
- ) -> dict:
- """
- Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
- Args:
- encoded_inputs:
- Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
- max_length: maximum length of the returned list and optionally padding length (see below).
- Will truncate by taking into account the special tokens.
- padding_strategy: PaddingStrategy to use for padding.
- - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
- - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
- - PaddingStrategy.DO_NOT_PAD: Do not pad
- The tokenizer padding sides are defined in self.padding_side:
- - 'left': pads on the left of the sequences
- - 'right': pads on the right of the sequences
- pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
- This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
- `>= 7.5` (Volta).
- return_attention_mask:
- (optional) Set to False to avoid returning attention mask (default: set to model specifics)
- """
- # Load from model defaults
- assert self.padding_side == "left"
-
- required_input = encoded_inputs[self.model_input_names[0]]
- seq_length = len(required_input)
-
- if padding_strategy == PaddingStrategy.LONGEST:
- max_length = len(required_input)
-
- if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
- max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
-
- needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
-
- # Initialize attention mask if not present.
- if "attention_mask" not in encoded_inputs:
- encoded_inputs["attention_mask"] = [1] * seq_length
-
- if "position_ids" not in encoded_inputs:
- encoded_inputs["position_ids"] = list(range(seq_length))
-
- if needs_to_be_padded:
- difference = max_length - len(required_input)
-
- if "attention_mask" in encoded_inputs:
- encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
- if "position_ids" in encoded_inputs:
- encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
- encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
-
- return encoded_inputs
-
***