• 使用llama.cpp实现LLM大模型的格式转换、量化、推理、部署


    使用llama.cpp实现LLM大模型的格式转换、量化、推理、部署

    概述

    llama.cpp的主要目标是能够在各种硬件上实现LLM推理,只需最少的设置,并提供最先进的性能。提供1.5位、2位、3位、4位、5位、6位和8位整数量化,以加快推理速度并减少内存使用。

    GitHub:https://github.com/ggerganov/llama.cpp

    克隆和编译

    克隆最新版llama.cpp仓库代码

    python
    
    复制代码git clone https://github.com/ggerganov/llama.cpp
    

    对llama.cpp项目进行编译,在目录下会生成一系列可执行文件

    css复制代码main:使用模型进行推理
    
    quantize:量化模型
    
    server:提供模型API服务
    

    1.编译构建CPU执行环境,安装简单,适用于没有GPU的操作系统

    python复制代码cd llama.cpp
    
    mkdir 
    

    2.编译构建GPU执行环境,确保安装CUDA工具包,适用于有GPU的操作系统

    如果CUDA设置正确,那么执行nvidia-sminvcc --version没有错误提示,则表示一切设置正确。

    python
    
    复制代码make clean &&  make LLAMA_CUDA=1
    

    3.如果编译失败或者需要重新编译,可尝试清理并重新编译,直至编译成功

    python
    
    复制代码make clean
    

    😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

    ## 环境准备

    1.下载受支持的模型

    要使用llamma.cpp,首先需要准备它支持的模型。在官方文档中给出了说明,这里仅仅截取其中一部分

    在这里插入图片描述 2.安装依赖

    llama.cpp项目下带有requirements.txt 文件,直接安装依赖即可。

    python
    
    复制代码pip install -r requirements.txt
    

    模型格式转换

    根据模型架构,可以使用convert.pyconvert-hf-to-gguf.py文件。

    转换脚本读取模型配置、分词器、张量名称+数据,并将它们转换为GGUF元数据和张量。

    GGUF格式

    Llama-3相比其前两代显著扩充了词表大小,由32K扩充至128K,并且改为BPE词表。因此需要使用--vocab-type参数指定分词算法,默认值是spm,如果是bpe,需要显示指定

    注意:

    官方文档说convert.py不支持LLaMA 3,喊使用convert-hf-to-gguf.py,但它不支持--vocab-type,且出现异常:error: unrecognized arguments: --vocab-type bpe,因此使用convert.py且没出问题

    使用llama.cpp项目中的convert.py脚本转换模型为GGUF格式

    python复制代码root@master:~/work/llama.cpp# python3 ./convert.py  /root/work/models/Llama3-Chinese-8B-Instruct/ --outtype f16 --vocab-type bpe --outfile ./models/Llama3-FP16.gguf
    INFO:convert:Loading model file /root/work/models/Llama3-Chinese-8B-Instruct/model-00001-of-00004.safetensors
    INFO:convert:Loading model file /root/work/models/Llama3-Chinese-8B-Instruct/model-00001-of-00004.safetensors
    INFO:convert:Loading model file /root/work/models/Llama3-Chinese-8B-Instruct/model-00002-of-00004.safetensors
    INFO:convert:Loading model file /root/work/models/Llama3-Chinese-8B-Instruct/model-00003-of-00004.safetensors
    INFO:convert:Loading model file /root/work/models/Llama3-Chinese-8B-Instruct/model-00004-of-00004.safetensors
    INFO:convert:model parameters count : 8030261248 (8B)
    INFO:convert:params = Params(n_vocab=128256, n_embd=4096, n_layer=32, n_ctx=8192, n_ff=14336, n_head=32, n_head_kv=8, n_experts=None, n_experts_used=None, f_norm_eps=1e-05, rope_scaling_type=None, f_rope_freq_base=500000.0, f_rope_scale=None, n_orig_ctx=None, rope_finetuned=None, ftype=<GGMLFileType.MostlyF16: 1>, path_model=PosixPath('/root/work/models/Llama3-Chinese-8B-Instruct'))
    INFO:convert:Loaded vocab file PosixPath('/root/work/models/Llama3-Chinese-8B-Instruct/tokenizer.json'), type 'bpe'
    INFO:convert:Vocab info: <BpeVocab with 128000 base tokens and 256 added tokens>
    INFO:convert:Special vocab info: <SpecialVocab with 280147 merges, special tokens {'bos': 128000, 'eos': 128001}, add special tokens unset>
    INFO:convert:Writing models/Llama3-FP16.gguf, format 1
    WARNING:convert:Ignoring added_tokens.json since model matches vocab size without it.
    INFO:gguf.gguf_writer:gguf: This GGUF file is for Little Endian only
    INFO:gguf.vocab:Adding 280147 merge(s).
    INFO:gguf.vocab:Setting special token type bos to 128000
    INFO:gguf.vocab:Setting special token type eos to 128001
    INFO:gguf.vocab:Setting chat_template to {% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>
    
    '+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>
    
    ' }}
    INFO:convert:[  1/291] Writing tensor token_embd.weight                      | size 128256 x   4096  | type F16  | T+   1
    INFO:convert:[  2/291] Writing tensor blk.0.attn_norm.weight                 | size   4096           | type F32  | T+   2
    INFO:convert:[  3/291] Writing tensor blk.0.ffn_down.weight                  | size   4096 x  14336  | type F16  | T+   2
    INFO:convert:[  4/291] Writing tensor blk.0.ffn_gate.weight                  | size  14336 x   4096  | type F16  | T+   2
    INFO:convert:[  5/291] Writing tensor blk.0.ffn_up.weight                    | size  14336 x   4096  | type F16  | T+   2
    INFO:convert:[  6/291] Writing tensor blk.0.ffn_norm.weight                  | size   4096           | type F32  | T+   2
    INFO:convert:[  7/291] Writing tensor blk.0.attn_k.weight                    | size   1024 x   4096  | type F16  | T+   2
    INFO:convert:[  8/291] Writing tensor blk.0.attn_output.weight               | size   4096 x   4096  | type F16  | T+   2
    INFO:convert:[  9/291] Writing tensor blk.0.attn_q.weight                    | size   4096 x   4096  | type F16  | T+   3
    INFO:convert:[ 10/291] Writing tensor blk.0.attn_v.weight                    | size   1024 x   4096  | type F16  | T+   3
    INFO:convert:[ 11/291] Writing tensor blk.1.attn_norm.weight                 | size   4096           | type F32  | T+   3
    

    转换为FP16的GGUF格式,模型体积大概15G。

    python复制代码root@master:~/work/llama.cpp# ll models -h
    -rw-r--r--  1 root root  15G May 17 07:47 Llama3-FP16.gguf
    

    bin格式

    python复制代码root@master:~/work/llama.cpp# python3 ./convert.py  /root/work/models/Llama3-Chinese-8B-Instruct/ --outtype f16 --vocab-type bpe --outfile ./models/Llama3-FP16.bin
    INFO:convert:Loading model file /root/work/models/Llama3-Chinese-8B-Instruct/model-00001-of-00004.safetensors
    INFO:convert:Loading model file /root/work/models/Llama3-Chinese-8B-Instruct/model-00001-of-00004.safetensors
    INFO:convert:Loading model file /root/work/models/Llama3-Chinese-8B-Instruct/model-00002-of-00004.safetensors
    INFO:convert:Loading model file /root/work/models/Llama3-Chinese-8B-Instruct/model-00003-of-00004.safetensors
    INFO:convert:Loading model file /root/work/models/Llama3-Chinese-8B-Instruct/model-00004-of-00004.safetensors
    INFO:convert:model parameters count : 8030261248 (8B)
    INFO:convert:params = Params(n_vocab=128256, n_embd=4096, n_layer=32, n_ctx=8192, n_ff=14336, n_head=32, n_head_kv=8, n_experts=None, n_experts_used=None, f_norm_eps=1e-05, rope_scaling_type=None, f_rope_freq_base=500000.0, f_rope_scale=None, n_orig_ctx=None, rope_finetuned=None, ftype=<GGMLFileType.MostlyF16: 1>, path_model=PosixPath('/root/work/models/Llama3-Chinese-8B-Instruct'))
    INFO:convert:Loaded vocab file PosixPath('/root/work/models/Llama3-Chinese-8B-Instruct/tokenizer.json'), type 'bpe'
    INFO:convert:Vocab info: <BpeVocab with 128000 base tokens and 256 added tokens>
    INFO:convert:Special vocab info: <SpecialVocab with 280147 merges, special tokens {'bos': 128000, 'eos': 128001}, add special tokens unset>
    INFO:convert:Writing models/Llama3-FP16.bin, format 1
    WARNING:convert:Ignoring added_tokens.json since model matches vocab size without it.
    INFO:gguf.gguf_writer:gguf: This GGUF file is for Little Endian only
    INFO:gguf.vocab:Adding 280147 merge(s).
    INFO:gguf.vocab:Setting special token type bos to 128000
    INFO:gguf.vocab:Setting special token type eos to 128001
    INFO:gguf.vocab:Setting chat_template to {% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>
    
    '+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>
    
    ' }}
    INFO:convert:[  1/291] Writing tensor token_embd.weight                      | size 128256 x   4096  | type F16  | T+   4
    INFO:convert:[  2/291] Writing tensor blk.0.attn_norm.weight                 | size   4096           | type F32  | T+   4
    INFO:convert:[  3/291] Writing tensor blk.0.ffn_down.weight                  | size   4096 x  14336  | type F16  | T+   4
    INFO:convert:[  4/291] Writing tensor blk.0.ffn_gate.weight                  | size  14336 x   4096  | type F16  | T+   5
    INFO:convert:[  5/291] Writing tensor blk.0.ffn_up.weight                    | size  14336 x   4096  | type F16  | T+   5
    INFO:convert:[  6/291] Writing tensor blk.0.ffn_norm.weight                  | size   4096           | type F32  | T+   5
    INFO:convert:[  7/291] Writing tensor blk.0.attn_k.weight                    | size   1024 x   4096  | type F16  | T+   5
    INFO:convert:[  8/291] Writing tensor blk.0.attn_output.weight               | size   4096 x   4096  | type F16  | T+   5
    INFO:convert:[  9/291] Writing tensor blk.0.attn_q.weight                    | size   4096 x   4096  | type F16  | T+   5
    INFO:convert:[ 10/291] Writing tensor blk.0.attn_v.weight                    | size   1024 x   4096  | type F16  | T+   5
    INFO:convert:[ 11/291] Writing tensor blk.1.attn_norm.weight                 | size   4096           | type F32  | T+   5
    INFO:convert:[ 12/291] Writing tensor blk.1.ffn_down.weight                  | size   4096 x  14336  | type F16  | T+   5
    INFO:convert:[ 13/291] Writing tensor blk.1.ffn_gate.weight                  | size  14336 x   4096  | type F16  | T+   5
    python复制代码root@master:~/work/llama.cpp# ll models -h
    -rw-r--r--  1 root root  15G May 17 07:47 Llama3-FP16.gguf
    -rw-r--r--  1 root root  15G May 17 08:02 Llama3-FP16.bin
    

    模型量化

    模型量化使用quantize命令,其具体可用参数与允许量化的类型如下:

    python复制代码root@master:~/work/llama.cpp# ./quantize
    usage: ./quantize [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] [--output-tensor-type] [--token-embedding-type] [--override-kv] model-f32.gguf [model-quant.gguf] type [nthreads]
    
      --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit
      --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing
      --pure: Disable k-quant mixtures and quantize all tensors to the same type
      --imatrix file_name: use data in file_name as importance matrix for quant optimizations
      --include-weights tensor_name: use importance matrix for this/these tensor(s)
      --exclude-weights tensor_name: use importance matrix for this/these tensor(s)
      --output-tensor-type ggml_type: use this ggml_type for the output.weight tensor
      --token-embedding-type ggml_type: use this ggml_type for the token embeddings tensor
      --keep-split: will generate quatized model in the same shards as input  --override-kv KEY=TYPE:VALUE
          Advanced option to override model metadata by key in the quantized model. May be specified multiple times.
    Note: --include-weights and --exclude-weights cannot be used together
    
    Allowed quantization types:
       2  or  Q4_0    :  3.56G, +0.2166 ppl @ LLaMA-v1-7B
       3  or  Q4_1    :  3.90G, +0.1585 ppl @ LLaMA-v1-7B
       8  or  Q5_0    :  4.33G, +0.0683 ppl @ LLaMA-v1-7B
       9  or  Q5_1    :  4.70G, +0.0349 ppl @ LLaMA-v1-7B
      19  or  IQ2_XXS :  2.06 bpw quantization
      20  or  IQ2_XS  :  2.31 bpw quantization
      28  or  IQ2_S   :  2.5  bpw quantization
      29  or  IQ2_M   :  2.7  bpw quantization
      24  or  IQ1_S   :  1.56 bpw quantization
      31  or  IQ1_M   :  1.75 bpw quantization
      10  or  Q2_K    :  2.63G, +0.6717 ppl @ LLaMA-v1-7B
      21  or  Q2_K_S  :  2.16G, +9.0634 ppl @ LLaMA-v1-7B
      23  or  IQ3_XXS :  3.06 bpw quantization
      26  or  IQ3_S   :  3.44 bpw quantization
      27  or  IQ3_M   :  3.66 bpw quantization mix
      12  or  Q3_K    : alias for Q3_K_M
      22  or  IQ3_XS  :  3.3 bpw quantization
      11  or  Q3_K_S  :  2.75G, +0.5551 ppl @ LLaMA-v1-7B
      12  or  Q3_K_M  :  3.07G, +0.2496 ppl @ LLaMA-v1-7B
      13  or  Q3_K_L  :  3.35G, +0.1764 ppl @ LLaMA-v1-7B
      25  or  IQ4_NL  :  4.50 bpw non-linear quantization
      30  or  IQ4_XS  :  4.25 bpw non-linear quantization
      15  or  Q4_K    : alias for Q4_K_M
      14  or  Q4_K_S  :  3.59G, +0.0992 ppl @ LLaMA-v1-7B
      15  or  Q4_K_M  :  3.80G, +0.0532 ppl @ LLaMA-v1-7B
      17  or  Q5_K    : alias for Q5_K_M
      16  or  Q5_K_S  :  4.33G, +0.0400 ppl @ LLaMA-v1-7B
      17  or  Q5_K_M  :  4.45G, +0.0122 ppl @ LLaMA-v1-7B
      18  or  Q6_K    :  5.15G, +0.0008 ppl @ LLaMA-v1-7B
       7  or  Q8_0    :  6.70G, +0.0004 ppl @ LLaMA-v1-7B
       1  or  F16     : 14.00G, -0.0020 ppl @ Mistral-7B
      32  or  BF16    : 14.00G, -0.0050 ppl @ Mistral-7B
       0  or  F32     : 26.00G              @ 7B
              COPY    : only copy tensors, no quantizing
    

    使用quantize量化模型,它提供各种量化位数的模型:Q2、Q3、Q4、Q5、Q6、Q8、F16。

    量化模型的命名方法遵循: Q + 量化比特位 + 变种。量化位数越少,对硬件资源的要求越低,但是模型的精度也越低。

    模型经过量化之后,可以发现模型的大小从15G降低到8G,但模型精度从16位浮点数降低到8位整数。

    python复制代码root@master:~/work/llama.cpp# ./quantize ./models/Llama3-FP16.gguf  ./models/Llama3-q8.gguf q8_0
    main: build = 2908 (359cbe3f)
    main: built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
    main: quantizing '/root/work/models/Llama3-FP16.gguf' to '/root/work/models/Llama3-q8.gguf' as Q8_0
    llama_model_loader: loaded meta data with 21 key-value pairs and 291 tensors from /root/work/models/Llama3-FP16.gguf (version GGUF V3 (latest))
    llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
    llama_model_loader: - kv   0:                       general.architecture str              = llama
    llama_model_loader: - kv   1:                               general.name str              = Llama3-Chinese-8B-Instruct
    llama_model_loader: - kv   2:                           llama.vocab_size u32              = 128256
    llama_model_loader: - kv   3:                       llama.context_length u32              = 8192
    llama_model_loader: - kv   4:                     llama.embedding_length u32              = 4096
    llama_model_loader: - kv   5:                          llama.block_count u32              = 32
    llama_model_loader: - kv   6:                  llama.feed_forward_length u32              = 14336
    llama_model_loader: - kv   7:                 llama.rope.dimension_count u32              = 128
    llama_model_loader: - kv   8:                 llama.attention.head_count u32              = 32
    llama_model_loader: - kv   9:              llama.attention.head_count_kv u32              = 8
    llama_model_loader: - kv  10:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
    llama_model_loader: - kv  11:                       llama.rope.freq_base f32              = 500000.000000
    llama_model_loader: - kv  12:                          general.file_type u32              = 1
    llama_model_loader: - kv  13:                       tokenizer.ggml.model str              = gpt2
    llama_model_loader: - kv  14:                      tokenizer.ggml.tokens arr[str,128256]  = ["!", "\"", "#", "$", "%", "&", "'", ...
    llama_model_loader: - kv  15:                      tokenizer.ggml.scores arr[f32,128256]  = [0.000000, 0.000000, 0.000000, 0.0000...
    llama_model_loader: - kv  16:                  tokenizer.ggml.token_type arr[i32,128256]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
    llama_model_loader: - kv  17:                      tokenizer.ggml.merges arr[str,280147]  = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "...
    llama_model_loader: - kv  18:                tokenizer.ggml.bos_token_id u32              = 128000
    llama_model_loader: - kv  19:                tokenizer.ggml.eos_token_id u32              = 128001
    llama_model_loader: - kv  20:                    tokenizer.chat_template str              = {% set loop_messages = messages %}{% ...
    llama_model_loader: - type  f32:   65 tensors
    llama_model_loader: - type  f16:  226 tensors
    [   1/ 291]                    token_embd.weight - [ 4096, 128256,     1,     1], type =    f16, converting to q8_0 .. size =  1002.00 MiB ->   532.31 MiB
    [   2/ 291]               blk.0.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
    [   3/ 291]                blk.0.ffn_down.weight - [14336,  4096,     1,     1], type =    f16, converting to q8_0 .. size =   112.00 MiB ->    59.50 MiB
    [   4/ 291]                blk.0.ffn_gate.weight - [ 4096, 14336,     1,     1], type =    f16, converting to q8_0 .. size =   112.00 MiB ->    59.50 MiB
    [   5/ 291]                  blk.0.ffn_up.weight - [ 4096, 14336,     1,     1], type =    f16, converting to q8_0 .. size =   112.00 MiB ->    59.50 MiB
    [   6/ 291]                blk.0.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
    [   7/ 291]                  blk.0.attn_k.weight - [ 4096,  1024,     1,     1], type =    f16, converting to q8_0 .. size =     8.00 MiB ->     4.25 MiB
    [   8/ 291]             blk.0.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, converting to q8_0 .. size =    32.00 MiB ->    17.00 MiB
    [   9/ 291]                  blk.0.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, converting to q8_0 .. size =    32.00 MiB ->    17.00 MiB
    [  10/ 291]                  blk.0.attn_v.weight - [ 4096,  1024,     1,     1], type =    f16, converting to q8_0 .. size =     8.00 MiB ->     4.25 MiB
    [  11/ 291]               blk.1.attn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
    [  12/ 291]                blk.1.ffn_down.weight - [14336,  4096,     1,     1], type =    f16, converting to q8_0 .. size =   112.00 MiB ->    59.50 MiB
    [  13/ 291]                blk.1.ffn_gate.weight - [ 4096, 14336,     1,     1], type =    f16, converting to q8_0 .. size =   112.00 MiB ->    59.50 MiB
    [  14/ 291]                  blk.1.ffn_up.weight - [ 4096, 14336,     1,     1], type =    f16, converting to q8_0 .. size =   112.00 MiB ->    59.50 MiB
    [  15/ 291]                blk.1.ffn_norm.weight - [ 4096,     1,     1,     1], type =    f32, size =    0.016 MB
    [  16/ 291]                  blk.1.attn_k.weight - [ 4096,  1024,     1,     1], type =    f16, converting to q8_0 .. size =     8.00 MiB ->     4.25 MiB
    [  17/ 291]             blk.1.attn_output.weight - [ 4096,  4096,     1,     1], type =    f16, converting to q8_0 .. size =    32.00 MiB ->    17.00 MiB
    [  18/ 291]                  blk.1.attn_q.weight - [ 4096,  4096,     1,     1], type =    f16, converting to q8_0 .. size =    32.00 MiB ->    17.00 MiB
    [  19/ 291]                  blk.1.attn_v.weight - [ 4096,  1024,     1,     1], type =    f16, converting to q8_0 .. size =     8.00 MiB ->     4.25 MiB
    python复制代码root@master:~/work/llama.cpp# ll -h models/
    -rw-r--r--  1 root root 8.0G May 17 07:54 Llama3-q8.gguf
    

    模型加载与推理

    模型加载与推理使用main命令,其支持如下可用参数:

    python复制代码root@master:~/work/llama.cpp# ./main -h
    
    usage: ./main [options]
    
    options:
      -h, --help            show this help message and exit
      --version             show version and build info
      -i, --interactive     run in interactive mode
      --interactive-specials allow special tokens in user text, in interactive mode
      --interactive-first   run in interactive mode and wait for input right away
      -cnv, --conversation  run in conversation mode (does not print special tokens and suffix/prefix)
      -ins, --instruct      run in instruction mode (use with Alpaca models)
      -cml, --chatml        run in chatml mode (use with ChatML-compatible models)
      --multiline-input     allows you to write or paste multiple lines without ending each in '\'
      -r PROMPT, --reverse-prompt PROMPT
                            halt generation at PROMPT, return control in interactive mode
                            (can be specified more than once for multiple prompts).
      --color               colorise output to distinguish prompt and user input from generations
      -s SEED, --seed SEED  RNG seed (default: -1, use random seed for < 0)
      -t N, --threads N     number of threads to use during generation (default: 30)
      -tb N, --threads-batch N
                            number of threads to use during batch and prompt processing (default: same as --threads)
      -td N, --threads-draft N                        number of threads to use during generation (default: same as --threads)
      -tbd N, --threads-batch-draft N
                            number of threads to use during batch and prompt processing (default: same as --threads-draft)
      -p PROMPT, --prompt PROMPT
                            prompt to start generation with (default: empty)
    

    可以加载预训练模型或者经过量化之后的模型,这里选择加载量化后的模型进行推理。

    在llama.cpp项目的根目录,执行如下命令,加载模型进行推理。

    python复制代码root@master:~/work/llama.cpp# ./main -m models/Llama3-q8.gguf --color -f prompts/alpaca.txt -ins -c 2048 --temp 0.2 -n 256 --repeat_penalty 1.1
    Log start
    main: build = 2908 (359cbe3f)
    main: built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
    main: seed  = 1715935175
    llama_model_loader: loaded meta data with 22 key-value pairs and 291 tensors from models/Llama3-q8.gguf (version GGUF V3 (latest))
    llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
    llama_model_loader: - kv   0:                       general.architecture str              = llama
    llama_model_loader: - kv   1:                               general.name str              = Llama3-Chinese-8B-Instruct
    llama_model_loader: - kv   2:                           llama.vocab_size u32              = 128256
    llama_model_loader: - kv   3:                       llama.context_length u32              = 8192
    llama_model_loader: - kv   4:                     llama.embedding_length u32              = 4096
    llama_model_loader: - kv   5:                          llama.block_count u32              = 32
    llama_model_loader: - kv   6:                  llama.feed_forward_length u32              = 14336
    llama_model_loader: - kv   7:                 llama.rope.dimension_count u32              = 128
    
    == Running in interactive mode. ==
     - Press Ctrl+C to interject at any time.
     - Press Return to return control to LLaMa.
     - To return control without starting a new line, end your input with '/'.
     - If you want to submit another line, end your input with '\'.
    
    <|begin_of_text|>Below is an instruction that describes a task. Write a response that appropriately completes the request.
    > hi
    Hello! How can I help you today?<|eot_id|>
    
    >
    

    在提示符>之后输入prompt,使用ctrl+c中断输出,多行信息以\作为行尾。执行./main -h命令查看帮助和参数说明,以下是一些常用的参数: `

    命令描述
    -m指定 LLaMA 模型文件的路径
    -mu指定远程 http url 来下载文件
    -i以交互模式运行程序,允许直接提供输入并接收实时响应。
    -ins以指令模式运行程序,这在处理羊驼模型时特别有用。
    -f指定prompt模板,alpaca模型请加载prompts/alpaca.txt
    -n控制回复生成的最大长度(默认:128)
    -c设置提示上下文的大小,值越大越能参考更长的对话历史(默认:512)
    -b控制batch size(默认:8),可适当增加
    -t控制线程数量(默认:4),可适当增加
    --repeat_penalty控制生成回复中对重复文本的惩罚力度
    --temp温度系数,值越低回复的随机性越小,反之越大
    --top_p, top_k控制解码采样的相关参数
    --color区分用户输入和生成的文本

    模型API服务

    llama.cpp提供了完全与OpenAI API兼容的API接口,使用经过编译生成的server可执行文件启动API服务。

    python复制代码root@master:~/work/llama.cpp# ./server -m models/Llama3-q8.gguf --host 0.0.0.0 --port 8000
    {"tid":"140018656950080","timestamp":1715936504,"level":"INFO","function":"main","line":2942,"msg":"build info","build":2908,"commit":"359cbe3f"}
    {"tid":"140018656950080","timestamp":1715936504,"level":"INFO","function":"main","line":2947,"msg":"system info","n_threads":30,"n_threads_batch":-1,"total_threads":30,"system_info":"AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | "}
    llama_model_loader: loaded meta data with 22 key-value pairs and 291 tensors from models/Llama3-q8.gguf (version GGUF V3 (latest))
    llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
    llama_model_loader: - kv   0:                       general.architecture str              = llama
    llama_model_loader: - kv   1:                               general.name str              = Llama3-Chinese-8B-Instruct
    llama_model_loader: - kv   2:                           llama.vocab_size u32              = 128256
    llama_model_loader: - kv   3:                       llama.context_length u32              = 8192
    llama_model_loader: - kv   4:                     llama.embedding_length u32              = 4096
    llama_model_loader: - kv   5:                          llama.block_count u32              = 32
    llama_model_loader: - kv   6:                  llama.feed_forward_length u32              = 14336
    

    启动API服务后,可以使用curl命令进行测试

    python复制代码curl --request POST \
        --url http://localhost:8000/completion \
        --header "Content-Type: application/json" \
        --data '{"prompt": "Hi"}'
    

    模型API服务(第三方)

    在llamm.cpp项目中有提到各种语言编写的第三方工具包,可以使用这些工具包提供API服务,这里以Python为例,使用llama-cpp-python提供API服务。

    安装依赖

    python复制代码pip install llama-cpp-python
    
    pip install llama-cpp-python -i https://mirrors.aliyun.com/pypi/simple/
    

    注意:可能还需要安装以下缺失依赖,可根据启动时的异常提示分别安装。

    python
    
    复制代码pip install sse_starlette starlette_context pydantic_settings
    

    启动API服务,默认运行在http://localhost:8000

    python
    
    复制代码python -m llama_cpp.server --model models/Llama3-q8.gguf
    

    安装openai依赖

    python
    
    复制代码pip install openai
    

    使用openai调用API服务

    python复制代码import os
    from openai import OpenAI  # 导入OpenAI库
    
    # 设置OpenAI的BASE_URL
    os.environ["OPENAI_BASE_URL"] = "http://localhost:8000/v1"
    
    client = OpenAI()  # 创建OpenAI客户端对象
    
    # 调用模型
    completion = client.chat.completions.create(
        model="llama3", # 任意填
        messages=[
            {"role": "system", "content": "你是一个乐于助人的助手。"},
            {"role": "user", "content": "你好!"}
        ]
    )
    
    # 输出模型回复
    print(completion.choices[0].message)
    

    在这里插入图片描述

    GPU推理

    如果编译构建了GPU执行环境,可以使用-ngl N --n-gpu-layers N参数,指定offload层数,让模型在GPU上运行推理

    例如:-ngl 40表示offload 40层模型参数到GPU

    未使用-ngl N --n-gpu-layers N参数,程序默认在CPU上运行

    python
    
    复制代码root@master:~/work/llama.cpp# ./server -m models/Llama3-FP16.gguf  --host 0.0.0.0 --port 8000
    

    可从以下关键启动日志看出,模型并没有在GPU上执行

    python复制代码ggml_cuda_init: GGML_CUDA_FORCE_MMQ:   no
    ggml_cuda_init: CUDA_USE_TENSOR_CORES: yes
    ggml_cuda_init: found 1 CUDA devices:
      Device 0: Tesla V100S-PCIE-32GB, compute capability 7.0, VMM: yes
    llm_load_tensors: ggml ctx size =    0.15 MiB
    llm_load_tensors: offloading 0 repeating layers to GPU
    llm_load_tensors: offloaded 0/33 layers to GPU
    llm_load_tensors:        CPU buffer size =  8137.64 MiB
    .........................................................................................
    llama_new_context_with_model: n_ctx      = 2048
    llama_new_context_with_model: n_batch    = 2048
    llama_new_context_with_model: n_ubatch   = 512
    

    使用-ngl N --n-gpu-layers N参数,程序默认在GPU上运行

    python
    
    复制代码root@master:~/work/llama.cpp# ./server -m models/Llama3-FP16.gguf  --host 0.0.0.0 --port 8000   --n-gpu-layers 1000
    

    可从以下关键启动日志看出,模型在GPU上执行

    python复制代码ggml_cuda_init: GGML_CUDA_FORCE_MMQ:   no
    ggml_cuda_init: CUDA_USE_TENSOR_CORES: yes
    ggml_cuda_init: found 1 CUDA devices:
      Device 0: Tesla V100S-PCIE-32GB, compute capability 7.0, VMM: yes
    llm_load_tensors: ggml ctx size =    0.30 MiB
    llm_load_tensors: offloading 32 repeating layers to GPU
    llm_load_tensors: offloading non-repeating layers to GPU
    llm_load_tensors: offloaded 33/33 layers to GPU
    llm_load_tensors:        CPU buffer size =  1002.00 MiB
    llm_load_tensors:      CUDA0 buffer size = 14315.02 MiB
    .........................................................................................
    llama_new_context_with_model: n_ctx      = 512
    llama_new_context_with_model: n_batch    = 512
    llama_new_context_with_model: n_ubatch   = 512
    llama_new_context_with_model: flash_attn = 0
    

    执行nvidia-smi命令,可以进一步验证模型已在GPU上运行。 在这里插入图片描述

    https://juejin.cn/theme/detail/7218019389664067621?contentType=1)

    那么,我们该如何学习大模型?

    作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

    一、大模型全套的学习路线

    学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。

    L1级别:AI大模型时代的华丽登场

    L2级别:AI大模型API应用开发工程

    L3级别:大模型应用架构进阶实践

    L4级别:大模型微调与私有化部署

    一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。

    以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

    二、640套AI大模型报告合集

    这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

    img

    三、大模型经典PDF籍

    随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

    img

    四、AI大模型商业化落地方案

    img

    作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

  • 相关阅读:
    ABAP:调用HTTP接口详解
    微服务架构介绍
    onebound电商API接口商品数据采集平台:让数据成为生产力!
    手把手教你前后分离架构(三) 前端项目美化
    基于第二代 ChatGLM2-6B P-Tuning v2 微调训练医疗问答任务
    深度解读传统品牌的NFT布局
    Android垃圾分类助手APP(Java+Android Studio+SQLite)
    VSCODE 系列(一)VSCODE下载和安装
    2023最新SSM计算机毕业设计选题大全(附源码+LW)之java志愿者管理系统0i6y0
    缓冲区设置
  • 原文地址:https://blog.csdn.net/2401_84495725/article/details/139677817