• 【动态规划】速解简单多状态类问题


    目录

    17.16 按摩师

    题⽬描述:

    解法(动态规划):

    1. 状态表⽰:

    2. 状态转移⽅程:

    3. 初始化:

    4. 填表顺序

    5. 返回值

    代码

    总结:

    213.打家劫舍II(medium)

     题⽬描述:

     解法(动态规划)

    代码:

    740.删除并获得点数

    题⽬描述:

     解法(动态规划):

    代码:

    剑指OfferI I091. 粉刷房⼦

    题⽬描述:

    解题思路:

    代码:


    17.16 按摩师

     //打家劫舍问题的变形~⼩偷变成了按摩师

    题⽬描述:

    ⼀个有名的按摩师会收到源源不断的预约请求,每个预约都可以选择接或不接。在每次预约服务之间 要有休息时间,因此她不能接受相邻的预约。给定⼀个预约请求序列,替按摩师找到最优的预约集合 (总预约时间最⻓),返回总的分钟数。

    解法(动态规划):

    算法思路:

    1. 状态表⽰:

    对于简单的线性dp ,我们可以⽤「经验+题⽬要求」来定义状态表⽰:

    • i. 以某个位置为结尾,巴拉巴拉;
    • ii. 以某个位置为起点,巴拉巴拉。

    这⾥我们选择⽐较常⽤的⽅式,以某个位置为结尾,结合题⽬要求,定义⼀个状态表⽰:

    dp[i] 表⽰:选择到 i 位置时,此时的最⻓预约时⻓。

     但是我们这个题在 i 位置的时候,会⾯临「选择」或者「不选择」两种抉择,所依赖的状态需要 细分:

    ▪ f[i] 表⽰:选择到 i 位置时, nums[i] 必选,此时的最⻓预约时⻓;

    ▪ g[i] 表⽰:选择到 i 位置时, nums[i] 不选,此时的最⻓预约时⻓。

    2. 状态转移⽅程:

    因为状态表⽰定义了两个,因此我们的状态转移⽅程也要分析两个:

    相当于是有 选和不选两种状态

    对于f[i] :

    ▪ 如果nums[i] 必选,那么我们仅需知道i - 1 位置在不选的情况下的最⻓预约时⻓, 然后加上nums[i] 即可,因此f[i] = g[i - 1] + nums[i] 。

    对于g[i] :

     ▪ 如果nums[i] 不选,那么i - 1 位置上选或者不选都可以。因此,我们需要知道i - 1 位置上选或者不选两种情况下的最⻓时⻓,因此g[i] = max(f[i - 1], g[i - 1]) 。

    3. 初始化

    这道题的初始化⽐较简单,因此⽆需加辅助节点,仅需初始化 f[0] = nums[0], g[0] = 0 即可。

    4. 填表顺序

    根据「状态转移⽅程」得「从左往右,两个表⼀起填」。

    5. 返回值

    应该返回max(f[n - 1], g[n - 1]) 。

    代码

    1. class Solution {
    2. public:
    3. int massage(vector<int>& nums) {
    4. int n = nums.size();
    5. if (n == 0) {
    6. return 0;
    7. }//要记得特例情况的判断
    8. vector<int> f(n);
    9. auto g = f;
    10. f[0] = nums[0];//初始化
    11. for (int i = 1; i < n; i++) {
    12. f[i] = g[i - 1] + nums[i];
    13. g[i] = max(f[i - 1], g[i - 1]);
    14. }
    15. return max(g[n - 1], f[n - 1]);
    16. }
    17. };

    总结:

    213.打家劫舍II(medium)

     题⽬描述:

    你是⼀个专业的⼩偷,计划偷窃沿街的房屋,每间房内都藏有⼀定的现⾦。这个地⽅所有的房屋都围成⼀圈,这意味着第⼀个房屋和最后⼀个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防 盗系统,如果两间相邻的房屋在同⼀晚上被⼩偷闯⼊,系统会⾃动报警。给定⼀个代表每个房屋存放⾦额的⾮负整数数组,计算你在不触动警报装置的情况下,今晚能够偷 窃到的最⾼⾦额。

    //理解:就是不能两个房间连着偷,就还是f or g 的问题啦

     解法(动态规划)

    算法思路: 这⼀个问题是「打家劫舍I」问题的变形。

    上⼀个问题是⼀个「单排」的模式,这⼀个问题是⼀个「环形」的模式,也就是⾸尾是相连的。但 是我们可以将「环形」问题转化为「两个单排」问题

    a. 偷第⼀个房屋时的最⼤⾦额x ,此时不能偷最后⼀个房⼦,因此就是偷[0, n - 2] 区间 的房⼦; b. 不偷第⼀个房屋时的最⼤⾦额y ,此时可以偷最后⼀个房⼦,因此就是偷[1, n - 1] 区 间的房⼦;

    两种情况下的「最⼤值」,就是最终的结果。

    因此,问题就转化成求「两次单排结果的最大值」。 

    代码:

    1. class Solution {
    2. public:
    3. int rob(vector<int>& nums) {
    4. int n = nums.size();
    5. // 两种情况下的最⼤值
    6. return max(nums[0] + rob1(nums, 2, n - 2), rob1(nums, 1, n - 1));
    7. }
    8. int rob1(vector<int>& nums, int left, int right) {
    9. if (left > right)
    10. return 0;
    11. // 1. 创建 dp 表
    12. // 2. 初始化
    13. // 3. 填表
    14. // 4. 返回结果
    15. int n = nums.size();
    16. vector<int> f(n);
    17. auto g = f;
    18. f[left] = nums[left]; // 初始化
    19. for (int i = left + 1; i <= right; i++) {
    20. f[i] = g[i - 1] + nums[i];
    21. g[i] = max(f[i - 1], g[i - 1]);
    22. }
    23. return max(f[right], g[right]);
    24. }
    25. };

    740.删除并获得点数

    题⽬描述:

    给你⼀个整数数组nums,你可以对它进⾏⼀些操作。每次操作中,选择任意⼀个nums[i],删除它并获得nums[i]的点数。之后,你必须删除所有等 于nums[i]-1 和nums[i]+1的元素。 开始你拥有0个点数。返回你能通过这些操作获得的最⼤点数。

     解法(动态规划):

    算法思路: 其实这道题依旧是「打家劫舍I」问题的变型。

    我们注意到题⽬描述,选择x 数字的时候, x - 1 与x + 1 是不能被选择的。像不像「打家 劫舍」问题中,选择i 位置的⾦额之后,就不能选择i - 1 位置以及i + 1 位置的⾦额呢~

    因此,我们可以创建⼀个⼤⼩为10001 (根据题⽬的数据范围)的 hash 数组,将nums 数组中每⼀个元素x ,累加到hash 数组下标为x 的位置处,然后在hash 数组上来⼀次「打 家劫舍」即可。

    代码:

    1. class Solution {
    2. public:
    3. int deleteAndEarn(vector<int>& nums) {
    4. const int N = 10001;
    5. // 1. 预处理
    6. //把没见过的往见过的上面靠
    7. int arr[N] = {0};
    8. for (auto x : nums)
    9. arr[x] += x;//记录重复数字的和
    10. // 2. 在 arr 数组上,做⼀次 “打家劫舍” 问题
    11. // 创建 dp 表
    12. vector<int> f(N);
    13. auto g = f;
    14. // 填表
    15. for (int i = 1; i < N; i++) {
    16. f[i] = g[i - 1] + arr[i];
    17. g[i] = max(f[i - 1], g[i - 1]);
    18. }
    19. // 返回结果
    20. return max(f[N - 1], g[N - 1]);
    21. }
    22. };

     预处理:把没见过的往见过的上面靠~

    剑指OfferI I091. 粉刷房⼦

    题⽬描述:

    假如有一排房子,共 n 个,每个房子可以被粉刷成红色、蓝色或者绿色这三种颜色中的一种,你需要粉刷所有的房子并且使其相邻的两个房子颜色不能相同。

    当然,因为市场上不同颜色油漆的价格不同,所以房子粉刷成不同颜色的花费成本也是不同的。每个房子粉刷成不同颜色的花费是以一个 n x 3 的正整数矩阵 costs 来表示的。

    例如,costs[0][0] 表示第 0 号房子粉刷成红色的成本花费;costs[1][2] 表示第 1 号房子粉刷成绿色的花费,以此类推。

    请计算出粉刷完所有房子最少的花费成本。

    示例 1:

    输入: costs = [[17,2,17],[16,16,5],[14,3,19]]
    输出: 10
    解释: 将 0 号房子粉刷成蓝色,1 号房子粉刷成绿色,2 号房子粉刷成蓝色
         最少花费: 2 + 5 + 3 = 10。
    

    示例 2:

    输入: costs = [[7,6,2]]
    输出: 2

    解题思路:

    代码:

    1. class Solution {
    2. public:
    3. int minCost(vectorint>>& costs){
    4. int minCost(vectorint>> & costs){
    5. // dp[i][j] 第i个房⼦刷成第j种颜⾊最⼩花费
    6. int n = costs.size();
    7. vectorint>> dp(n + 1, vector<int>(3));
    8. for (int i = 1; i <= n; i++) {
    9. dp[i][0] = min(dp[i - 1][1], dp[i - 1][2]) + costs[i - 1][0];
    10. dp[i][1] = min(dp[i - 1][0], dp[i - 1][2]) + costs[i - 1][1];
    11. dp[i][2] = min(dp[i - 1][1], dp[i - 1][0]) + costs[i - 1][2];
    12. }
    13. return min(dp[n][0], min(dp[n][1], dp[n][2]));//只能两个一min
    14. }
    15. }
    16. ;

    sum:

    1.情况选择的表示:

    两种:f or g

    三种:二维数组

    2.然后分别写出情况下的dp方程

  • 相关阅读:
    网络安全渗透测试工具AWVS14.6.2的安装与使用(激活)
    代理模式,dk动态代理,cglib动态代理
    机器学习西瓜书——第五章 神经网络
    三个月能学到多少网络安全知识?
    Centos安装mongodb
    saas多用户小程序商城源码
    【kr】强化学习之旅 1 环境配置
    1754. 构造字典序最大的合并字符串-交叠比较-力扣双百代码
    淘宝官方开放平台API接口获取淘宝商品详情信息(价格、销量、优惠价等)
    Vue2.0开发之——Vue基础用法-列表渲染指令(24)
  • 原文地址:https://blog.csdn.net/2301_80171004/article/details/139279820