首先,安装必要的Python包:
pip install transformers peft datasets torch faiss-cpu
从Hugging Face加载LLaMA3模型和对应的tokenizer:
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B")
加载Spider数据集:
from datasets import load_dataset
dataset = load_dataset("spider")
train_data = dataset['train']
valid_data = dataset['validation']
配置LORA参数并应用到模型上:
from peft import LoraConfig, get_peft_model
lora_config = LoraConfig(
r=16,
lora_alpha=32,
lora_dropout=0.1,
target_modules=["q_proj", "v_proj"]
)
model = get_peft_model(model, lora_config)
定义数据预处理函数并处理训练和验证数据:
def preprocess_function(examples):
inputs = [f"translate English to SQL: {query}" for query in examples["question"]]
targets = [sql for sql in examples["query"]]
model_inputs = tokenizer(inputs, max_length=512, truncation=True, padding="max_length", return_tensors="pt")
labels = tokenizer(targets, max_length=512, truncation=True, padding="max_length", return_tensors="pt")
model_inputs["labels"] = labels["input_ids"]
return model_inputs
train_dataset = train_data.map(preprocess_function, batched=True)
valid_dataset = valid_data.map(preprocess_function, batched=True)
实现自定义训练循环:
import torch
from torch.utils.data import DataLoader
train_dataloader = DataLoader(train_dataset, batch_size=8, shuffle=True)
valid_dataloader = DataLoader(valid_dataset, batch_size=8)
optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5)
for epoch in range(3): # 假设训练3个epoch
model.train()
for batch in train_dataloader:
optimizer.zero_grad()
outputs = model(input_ids=batch['input_ids'], labels=batch['labels'])
loss = outputs.loss
loss.backward()
optimizer.step()
model.eval()
eval_loss = 0
with torch.no_grad():
for batch in valid_dataloader:
outputs = model(input_ids=batch['input_ids'], labels=batch['labels'])
eval_loss += outputs.loss.item()
print(f"Epoch {epoch+1}, Validation Loss: {eval_loss / len(valid_dataloader)}")
设置FAISS检索器,并结合检索与生成:
import faiss
import numpy as np
from transformers import AutoTokenizer
# 假设我们有一个语料库
corpus = ["Example sentence 1.", "Example sentence 2.", "Example sentence 3."]
# 将语料库句子转换为token IDs
corpus_inputs = tokenizer(corpus, return_tensors='pt', padding=True, truncation=True)
# 使用模型生成语料库句子的embedding
with torch.no_grad():
corpus_outputs = model(**corpus_inputs)
# 获取最后一层隐藏状态的平均值作为句子的embedding
corpus_embeddings = torch.mean(corpus_outputs.last_hidden_state, dim=1).numpy()
# 构建FAISS索引
index = faiss.IndexFlatL2(corpus_embeddings.shape[1])
index.add(corpus_embeddings)
# 结合RAG技术与检索
def retrieve_and_generate(query, context_size=3, max_length=128, num_return_sequences=1):
# 使用FAISS检索最相关的文档
query_inputs = tokenizer(query, return_tensors='pt', padding=True, truncation=True)
with torch.no_grad():
query_embedding = model(**query_inputs).last_hidden_state.mean(dim=1).numpy()
D, I = index.search(query_embedding, k=context_size)
retrieved_docs = [corpus[i] for i in I[0]]
context = " ".join(retrieved_docs)
# 将检索到的文档与查询结合
input_with_context = f"{context} {query}"
# 生成查询的SQL
inputs = tokenizer(input_with_context, return_tensors="pt", max_length=max_length, truncation=True)
with torch.no_grad():
outputs = model.generate(**inputs, num_return_sequences=num_return_sequences)
# 返回生成的SQL查询
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# 示例
query = "Show all users"
sql_query = retrieve_and_generate(query)
print(sql_query)
实现NLU组件和对话管理:
from transformers import pipeline
nlu = pipeline("ner")
def parse_input(user_input):
entities = nlu(user_input)
if "users" in user_input.lower():
return "SELECT * FROM users"
else:
return "Query not recognized"
class Agent:
def __init__(self):
self.context = ""
def handle_input(self, user_input):
self.context += f" {user_input}"
sql_query = parse_input(self.context)
return sql_query
agent = Agent()
user_input = "Show all users"
response = agent.handle_input(user_input)
print(response) # 输出: SELECT * FROM users
保存微调后的模型:
model.save_pretrained("./finetuned_llama3")
tokenizer.save_pretrained("./finetuned_llama3")
通过以上步骤,我们从头到尾实现了使用LORA微调LLaMA3模型,并结合RAG和Agent技术进行Text2SQL任务。这个流程包括环境准备、数据预处理、自定义训练循环、RAG技术整合、Agent实现,以及最终的模型保存。