物理层作为TCP/IP网络模型的最低层,负责直接与传输介质交互,实现比特流的传输。
要完成物理层的主要任务,需要确定以下特性:
这张图片展示了一个典型的数据通信系统的结构,该系统通过公用电话网进行数据传输。这个系统可以分为三个主要部分:源系统、传输系统和目的系统。
源系统: 源系统是数据通信的起点,它包括源点、发送器和输入信息。在这个例子中,源系统由一台计算机(PC)组成,它通过调制解调器连接到公用电话网。源点是数据的产生者,它可以是用户在计算机上输入的信息,如汉字或数字比特流。这些信息被发送器接收并转换为适合传输的信号形式,通常是模拟信号。
传输系统: 传输系统负责将源系统发送的信号从一个地点传送到另一个地点。在这个例子中,传输系统是公用电话网,它使用调制解调器将模拟信号转换回数字比特流。传输系统通常包括各种物理媒介,如电缆、光纤等,以及相关的设备,如交换机和路由器,用于路由和转发数据包。
目的系统: 目的系统是数据通信的终点,它包括接收器、终端和输出信息。在这个例子中,目的系统也是一台计算机(PC),它通过调制解调器连接到公用电话网。接收器接收到传输系统传递过来的信号,并将其转换回原始的输入数据。最终,这些数据在终端上显示出来,例如在另一台计算机上显示汉字。
- 单工通信:指数据只能沿着单一方向进行传输。在这种模式下,通信系统中的发送端只能发送信息,接收端只能接收信息,双方无法互换角色。例如,无线电广播或电视广播就是典型的单工通信系统,听众无法直接回应广播内容。
- 半双工通信:半双工通信允许数据在两个方向上进行传输,但它不能同时进行。通信的双方不能同时发送和接收信息,必须交替进行。如同步传输时需等待一方完成发送再切换到接收状态。例如,对讲机是一个常见的半双工通信,当一方讲话时,另一方必须等待对方说完才能开始自己的发言。
- 全双工通信:全双工通信是最为灵活高效的通信方式,允许数据同时在两个方向上传输,即通信的双方可以同时发送和接收信息,彼此不会互相干扰。
- 不归零制:当比特值为1时,信号电平保持在一个固定正值(或负值),当比特值为0时,信号电平保持在相反的电平。因此,“1”和“0”的区别在于信号是否翻转,但不会恢复到零电平。
- 归零制:每个比特周期内,无论是“1”还是“0”,信号都要回到零电平。即每个比特的开始都是信号的跳变,对于“1”,信号会在非零电平上保持一段时间后再回到零电平;对于“0”,信号在零电平上短暂上升后立即回到零电平。
- 曼彻斯特编码:每个比特周期都有一次电平跳变。比特“1”被编码为在半个比特周期处有一次电平翻转(从高到低或从低到高),比特“0”则是前半周期与后半周期电平相同。
数字信号到模拟信号的转换:调制(Modulation)是指将数字信号转换为模拟信号的过程。这是因为早期的通信系统和某些现代的长距离通信系统(如电话线或无线电波)更适宜传输模拟信号而非数字信号。
- 幅度键控(ASK):通过改变载波信号的幅度来对应数字信号的“0”和“1”。
- 频率键控(FSK):根据数字信号的不同状态改变载波信号的频率。
- 相位键控(PSK):依据数字信息改变载波信号的相位。
对于理想低通信道(无噪声、无失真的信道),奈氏准则给出了码元传输速率的上限,即如果要避免码间串扰,理想低通信道的最高码元传输速率等于该信道带宽(W Hz)的两倍,即 2W Baud。这里的码元传输速率通常以波特(Baud)表示,即每秒钟传输的码元数量。
对于实际的、带宽受限并且存在噪声的信道,香农提出了一种更为精确的信道容量计算方法。香农定理表明,在一定的带宽(W Hz)和给定的信噪比的情况下,无差错传输的最大信息传输速率等于:C = W * log2(1 + S/N) 这里的C是信道的极限信息传输速率,log2是以2为底的对数,S是信道内所传信号的平均功率,N是信道内部的噪声功率。
通过复用技术,通信系统可以有效地服务多个用户或多个数据流的同时传输,极大地提高了通信系统的容量和效率。
————————————————————
感谢大家观看,不妨点赞支持一下吧[doge]
如有错误,随时纠正,谢谢大家