• 【高级RAG技巧】在大模型知识库问答中增强文档分割与表格提取


    前言

    文档分割是一项具有挑战性的任务,它是任何知识库问答系统的基础。高质量的文档分割结果对于显著提升问答效果至关重要,但是目前大多数开源库的处理能力有限。
    这些开源的库或者方法缺点大致可以罗列如下:

    • 只能处理文本,无法提取表格中的内容
    • 缺乏有效的分割策略,要么是一整个文档全部提取,要么是词粒度的获取

    对于第一点,一般是把表格中的内容识别成文本,这样喂给大模型的时候就会出现一连串数字或者字母,这无疑会增大模型的理解难度;对于第二点,则是需要按照指定的长度对文档进行切分,或者把词按照一定的规则拼接到一块,这同样会损失到文本自身的上下文信息。

    而本文接下来介绍的Open-parse这个库可以直接从文本中提取出多个节点,每个节点就是一个chunk,已经分好了,因此无需再按照长度进行split,这样同时也比单独提取一个词再进行合并又简化了不少操作;同时还支持同时提取表格和文字,无需分开提取。

    快速开始

    安装

    pip install openparse
    

    使用pip进行安装,同时这个库依赖Pymupdfpdfminer等其他库,也会同时安装。

    识别文字

    pdf = "c:\\人口.pdf"
    parser = openparse.DocumentParser()
    parsed_basic_doc = parser.parse(pdf)
    for node in parsed_basic_doc.nodes:
        node
        print('\n--------------------\n')
    

    可以看到每一页的pdf被分成多个chunk,且还能保留原始文本中的加粗斜体等信息。

    print(parsed_basic_doc.nodes[0])
    
    

    elements=(TextElement(text='Aging Research老龄化研究, 2022, 9(3), 26-34\nPublished Online September 2022 in Hans. http://www.hanspub.org/journal/ar \nhttps://doi.org/10.12677/ar.2022.93004 ', lines=(LineElement(bbox=(56.64, 739.57, 232.44, 750.01), spans=(TextSpan(text='Aging Research ', is_bold=True, is_italic=False, size=9.0), TextSpan(text='老龄化研究', is_bold=False, is_italic=False, size=9.0), TextSpan(text=', 2022, 9(3), 26-34 ', is_bold=True, is_italic=False, size=9.0)), style=None, text='Aging Research老龄化研究, 2022, 9(3), 26-34'), LineElement(bbox=(56.65, 728.28, 348.95, 737.28), spans=(TextSpan(text='Published Online September 2022 in Hans. http://www.hanspub.org/journal/ar ', is_bold=False, is_italic=False, size=9.0),), style=None, text='Published Online September 2022 in Hans. http://www.hanspub.org/journal/ar '), LineElement(bbox=(56.64, 717.36, 225.23, 726.36), spans=(TextSpan(text='https://doi.org/10.12677/ar.2022.93004 ', is_bold=False, is_italic=False, size=9.0),), style=None, text='https://doi.org/10.12677/ar.2022.93004 ')), bbox=Bbox(page=0, page_height=807.96, page_width=595.32, x0=56.64, y0=717.36, x1=348.95, y1=750.01), variant=, embed_text='Aging Research老龄化研究, 2022, 9(3), 26-34\nPublished Online September 2022 in Hans. http://www.hanspub.org/journal/ar \nhttps://doi.org/10.12677/ar.2022.93004 '),) variant={'text'} tokens=66 bbox=[Bbox(page=0, page_height=807.96, page_width=595.32, x0=56.64, y0=717.36, x1=348.95, y1=750.01)] text='Aging Research老龄化研究, 2022, 9(3), 26-34\nPublished Online September 2022 in Hans. http://www.hanspub.org/journal/ar \nhttps://doi.org/10.12677/ar.2022.93004 '

    通过打印出node,可以看出这种结构包含了原始文本中的元信息,包含文本的坐标、大小、是否加粗、是否斜体等。

    识别表格内容

    • Pymupdf
    • Unitable
    • Table Transformer

    openparse提供了三个方法来识别和提取表格中的内容,方法1是直接使用Pymupdf这个库的表格识别模块,因此准确率最差,但对硬件要求不高;其他的2个都是100mb左右的模型,如果用cpu来推理会比较耗时。

    # defining the parser (table_args is a dict)
    parser = openparse.DocumentParser(
        table_args={
            "parsing_algorithm": "table-transformers", # 或者其他两个方法
            "table_output_format": "html" # 以html格式返回表格内容,也可以选择md
        }
    )
    
    

    与前面直接识别文本类似,只需要加入table_args参数即可。

    可以看到表格中的内容被很好的还原了

    使用表格提取除了返回表格内容外,还会把正常的文本返回,这与Pymupdf等库只能选择返回文本还是只返回已有的表格不同。因此在不确定文本中含有什么内容时用这个方法会更加保险一点,对硬件的计算要求也不高。

    语义相似

    from openparse import processing, DocumentParser
    
    semantic_pipeline = processing.SemanticIngestionPipeline(
        openai_api_key=OPEN_AI_KEY,
        model="text-embedding-3-large",
        min_tokens=64,
        max_tokens=1024,
    )
    
    parser = DocumentParser(
        processing_pipeline=semantic_pipeline,
    )
    

    openparse还支持端到端的方式对node数据进行向量化并聚类,只需要指定processing_pipeline为相应的embedding模型即可。但是目前仅支持OpenAI的模型,需要OPEN_AI_KEY才可以使用。虽然后续会更新其他模型,但目前想用的话需要自己修改这段代码的实现。

    combine_parser = DocumentParser(
        processing_pipeline=semantic_pipeline,
        table_args={
            "parsing_algorithm": "table-transformers",
            "table_output_format": "html"
        }
        
    )
    

    同时,还能把语义相似和表格内容提取组合到一起使用,实现对表格内容提取的同时还能融合相似的片段。

    总结

    openparse这个库算是目前开源社区中比较优秀的文档分割处理库了,功能虽然全面,还是还有不少可以优化的地方,后续也会支持其他向量化模型,并且可以跟LlamaindexLangchain等框架无缝衔接,应该值得持续关注。

  • 相关阅读:
    goLang sqlboiler ORM工具的使用
    30天Python入门(第二十三天:深入了解Python中的虚拟环境)
    MAX485芯片介绍(MAX485ESA+T,半双工RS422和RS485串口收发传输芯片,2.5Mbps传输速率。5V逻辑电平)
    基于智能数采网关的商铺能耗在线监测方案
    传输大文件小工具:bypy
    解决XML中符号解析问题
    MyBatis bind标签起什么作用呢?
    SpringBoot 引入 smart-doc 接口文档管理插件,以及统一接口返回
    Vue快速入门
    【docker实战】如何上传镜像到自己的私有仓库
  • 原文地址:https://www.cnblogs.com/deeplearningmachine/p/18144458