
作者|KIDGINBROOK
上节中完成了单机内部的channel搜索,仍然以ringGraph为例的话,相当于在单台机器内部搜索出来了一系列的环,接下来需要将机器之间的环连接起来。
为了方便理解,假设两机十六卡的情况下第一台机器的一个ring为:
- graph->intra: GPU/0 GPU/7 GPU/6 GPU/3 GPU/2 GPU/5 GPU/4 GPU/1
- graph->inter: NET/0 NET/0
第二个机器对应的ring为:
- graph->intra: GPU/10 GPU/9 GPU/8 GPU/13 GPU/12 GPU/15 GPU/14 GPU/11
- graph->inter: NET/0 NET/0
allGather3Data用于rank间聚合channel的信息,ncclGraphInfo记录了环的信息,比如speed和type
- struct ncclGraphInfo {
- int sameChannels;
- float speedIntra;
- float speedInter;
- int typeIntra;
- };
-
- struct {
- int cudaCompCap;
- int fullCudaCompCap;
- int nChannels;
- struct ncclGraphInfo tree;
- struct ncclGraphInfo ring;
- struct ncclGraphInfo collNet;
- struct ncclTopoRanks topoRanks;
- } *allGather3Data;
-
- NCCLCHECK(ncclCalloc(&allGather3Data, nranks));
- allGather3Data[rank].cudaCompCap = ncclCudaCompCap();
- allGather3Data[rank].nChannels = comm->nChannels = treeGraph.nChannels = ringGraph.nChannels =
- std::min(treeGraph.nChannels, ringGraph.nChannels);
- ...
- allGather3Data[rank].ring.sameChannels = ringGraph.sameChannels;
- allGather3Data[rank].ring.speedIntra = ringGraph.speedIntra;
- allGather3Data[rank].ring.speedInter = ringGraph.speedInter;
- allGather3Data[rank].ring.typeIntra = ringGraph.typeIntra;
- ...
然后开始设置ncclTopoRanks,获取当前rank在ring中的prev和next,其中第一个rank的prev和最后一个rank的next为-1,如rank6的prev为7,next为3;获取当前ring的ringRecv和ringSend,即ring的第一个节点和最后一个节点,最后将搜索到的环复制了一遍,这里在官方issue中看到相关解释是为了进一步的并行以充分利用带宽。
- struct ncclTopoRanks {
- int ringRecv[MAXCHANNELS];
- int ringSend[MAXCHANNELS];
- int ringPrev[MAXCHANNELS];
- int ringNext[MAXCHANNELS];
- int treeUpRecv[MAXCHANNELS];
- int treeUpSend[MAXCHANNELS];
- int treeDnRecv[MAXCHANNELS];
- int treeDnSend[MAXCHANNELS];
- };
-
- ncclResult_t ncclTopoPreset(struct ncclComm* comm,
- struct ncclTopoGraph* treeGraph, struct ncclTopoGraph* ringGraph, struct ncclTopoGraph* collNetGraph,
- struct ncclTopoRanks* topoRanks) {
- int rank = comm->rank;
- int localRanks = comm->localRanks;
- int nChannels = comm->nChannels;
-
- for (int c=0; c
- struct ncclChannel* channel = comm->channels+c;
- channel->ring.prev = channel->ring.next = -1;
- ...
-
- int* ringIntra = ringGraph->intra+c*localRanks;
- int* treeIntra = treeGraph->intra+c*localRanks;
- int* collNetIntra = collNetGraph->intra+c*localRanks;
-
- for (int i=0; i
- if (ringIntra[i] == rank) {
- topoRanks->ringRecv[c] = ringIntra[0];
- topoRanks->ringSend[c] = ringIntra[localRanks-1];
- channel->ring.prev = (i == 0) ? -1 : ringIntra[i-1];
- channel->ring.next = (i == localRanks-1) ? -1 : ringIntra[i+1];
- }
- ...
- }
- topoRanks->ringPrev[c] = channel->ring.prev;
- topoRanks->ringNext[c] = channel->ring.next;
- }
- // Duplicate channels rings/trees
- struct ncclChannel* channel0 = comm->channels;
- struct ncclChannel* channel1 = channel0+nChannels;
- memcpy(channel1, channel0, nChannels*sizeof(struct ncclChannel));
- return ncclSuccess;
- }
然后通过bootstrapAllGather获取全局的allGather3Data信息,计算出当前rank所在的node保存在comm->node,以及每个node的第一个rank保存在nodesFirstRank,因此例子中:
- nodesFirstRank[0]: 0
- nodesFirstRank[1]: 10
然后开始将每个机器的环首尾相连组成大环。
- ncclResult_t ncclTopoPostset(struct ncclComm* comm, int* firstRanks, struct ncclTopoRanks** allTopoRanks, int* rings) {
- // Gather data from all ranks
- int *ringRecv, *ringSend, *ringPrev, *ringNext, *treeUpRecv, *treeUpSend, *treeDnRecv,*treeDnSend;
- int nranks = comm->nRanks;
- int nChannels = comm->nChannels;
- NCCLCHECK(ncclCalloc(&ringRecv, nranks*MAXCHANNELS));
- NCCLCHECK(ncclCalloc(&ringSend, nranks*MAXCHANNELS));
- NCCLCHECK(ncclCalloc(&ringPrev, nranks*MAXCHANNELS));
- NCCLCHECK(ncclCalloc(&ringNext, nranks*MAXCHANNELS));
- NCCLCHECK(ncclCalloc(&treeUpRecv, nranks*MAXCHANNELS));
- NCCLCHECK(ncclCalloc(&treeUpSend, nranks*MAXCHANNELS));
- NCCLCHECK(ncclCalloc(&treeDnRecv, nranks*MAXCHANNELS));
- NCCLCHECK(ncclCalloc(&treeDnSend, nranks*MAXCHANNELS));
- for (int i=0; i<nranks; i++) {
- for (int c=0; c<nChannels;c++) {
- ringRecv[c*nranks+i] = allTopoRanks[i]->ringRecv[c];
- ringSend[c*nranks+i] = allTopoRanks[i]->ringSend[c];
- ringPrev[c*nranks+i] = allTopoRanks[i]->ringPrev[c];
- ringNext[c*nranks+i] = allTopoRanks[i]->ringNext[c];
- treeUpRecv[c*nranks+i] = allTopoRanks[i]->treeUpRecv[c];
- treeUpSend[c*nranks+i] = allTopoRanks[i]->treeUpSend[c];
- treeDnRecv[c*nranks+i] = allTopoRanks[i]->treeDnRecv[c];
- treeDnSend[c*nranks+i] = allTopoRanks[i]->treeDnSend[c];
- }
- }
-
- // Connect rings and trees. This should also duplicate the channels.
- NCCLCHECK(connectRings(comm, ringRecv, ringSend, ringPrev, ringNext, firstRanks));
- NCCLCHECK(connectTrees(comm, treeUpRecv, treeUpSend, treeDnRecv, treeDnSend, firstRanks));
-
- // Duplicate ringPrev/ringNext for ncclBuildRing
- memcpy(ringPrev+nChannels*nranks, ringPrev, nChannels*nranks*sizeof(int));
- memcpy(ringNext+nChannels*nranks, ringNext, nChannels*nranks*sizeof(int));
-
- // Duplication should be complete now
- nChannels = comm->nChannels = std::min(MAXCHANNELS,nChannels*2);
-
- // Honor NCCL_MIN_NRINGS/NCCL_MAX_NRINGS.
- // We permit combining max, then min, to only use the first channels, then duplicate them.
- nChannels = comm->nChannels = std::min((int)ncclMaxNchannels(), nChannels);
- int c;
- for (c=nChannels; c<ncclMinNchannels(); c++) {
- memcpy(ringPrev+c*nranks, ringPrev+(c-nChannels)*nranks, nranks*sizeof(int));
- memcpy(ringNext+c*nranks, ringNext+(c-nChannels)*nranks, nranks*sizeof(int));
- memcpy(comm->channels+c, comm->channels+c-nChannels, sizeof(struct ncclChannel));
- }
- nChannels = comm->nChannels = c;
-
- // Create rings array and check all is fine
- NCCLCHECK(ncclBuildRings(nChannels, rings, comm->rank, comm->nRanks, ringPrev, ringNext));
-
- free(ringRecv);
- free(ringSend);
- free(ringPrev);
- free(ringNext);
- free(treeUpRecv);
- free(treeUpSend);
- free(treeDnRecv);
- free(treeDnSend);
-
- return ncclSuccess;
- }
这里将所有channel的prev,next,send,recv信息打平到数组中,例如recv[0]表示第一个ring中rank0的recv是哪个rank,然后开始计算当前机器第一个rank的prev和最后一个rank的next。
- static ncclResult_t connectRings(struct ncclComm* comm, int* ringRecv, int* ringSend, int* ringPrev, int* ringNext, int* firstRanks) {
- int nChannels = comm->nChannels;
- int nNodes = comm->nNodes;
- for (int c=0; c
- int* recv = ringRecv+c*comm->nRanks;
- int* send = ringSend+c*comm->nRanks;
- int* prev = ringPrev+c*comm->nRanks;
- int* next = ringNext+c*comm->nRanks;
- struct ncclChannel* channel0 = comm->channels+c;
- struct ncclChannel* channel1 = channel0+nChannels;
- for (int n=0; n
- int recvRank = recv[firstRanks[n]];
- int prevSendRank = send[firstRanks[(n-1+nNodes)%nNodes]];
- prev[recvRank] = prevSendRank;
- if (comm->rank == recvRank) {
- channel0->ring.prev = prevSendRank;
- channel1->ring.prev = prevSendRank;
- }
- int sendRank = send[firstRanks[n]];
- int nextRecvRank = recv[firstRanks[(n+1)%nNodes]];
- next[sendRank] = nextRecvRank;
- if (comm->rank == sendRank) {
- channel0->ring.next = nextRecvRank;
- channel1->ring.next = nextRecvRank;
- }
- }
- TRACE(NCCL_GRAPH, "Ring %d : %d -> %d -> %d", c, channel0->ring.prev, comm->rank, channel0->ring.next);
- TRACE(NCCL_GRAPH, "Ring %d : %d -> %d -> %d", c+nChannels, channel1->ring.prev, comm->rank, channel1->ring.next);
- }
- return ncclSuccess;
- }
如上所示,当前机器recv rank的prev就是前一个机器的send rank,当前机器send rank的next就是下一个机器的recv rank。然后执行ncclBuildRings按照大环的顺序依次记录rank到rings。
- ncclResult_t ncclBuildRings(int nrings, int* rings, int rank, int nranks, int* prev, int* next) {
- for (int r=0; r
- char prefix[30];
-
- int current = rank;
- for (int i=0; i
- rings[r*nranks+i] = current;
- current = next[r*nranks+current];
- }
- ...
- // Check that all ranks are there
- for (int i=0; i
- int found = 0;
- for (int j=0; j
- if (rings[r*nranks+j] == i) {
- found = 1;
- break;
- }
- }
- if (found == 0) {
- WARN("Error : ring %d does not contain rank %d", r, i);
- return ncclInternalError;
- }
- }
- }
- return ncclSuccess;
- }
还是以上述为例,其中rank6记录的rings的第一个大环为:
GPU/6 GPU/3 GPU/2 GPU/5 GPU/4 GPU/1 GPU/10 GPU/9 GPU/8 GPU/13 GPU/12 GPU/15 GPU/14 GPU/11 GPU/0 GPU/7
到这里就完成了机器之间大环建立,每个rank都知道自己的上一个和下一个rank是谁,那么就可以建立实际的通信链路了。
接下来每个rank都要为通信分配一些内存,为了提高性能,这里会在分配buffer之前设置cpu亲和性,使得分配的内存尽量是当前numa本地的。
- cpu_set_t affinitySave;
- sched_getaffinity(0, sizeof(cpu_set_t), &affinitySave);
- NCCLCHECK(ncclTopoSetAffinity(comm->topo, comm->rank));
-
- ncclResult_t ncclTopoSetAffinity(struct ncclTopoSystem* system, int rank) {
- struct ncclTopoNode* cpu = NULL, *gpu = NULL;
- for (int g=0; g
nodes[GPU].count; g++) { - if (system->nodes[GPU].nodes[g].gpu.rank == rank) {
- gpu = system->nodes[GPU].nodes+g;
- // Find closer CPU
- int cpuIndex = -1, minHops = 0;
- for (int c=0; c
nodes[CPU].count; c++) { - int nHops = system->nodes[GPU].nodes[g].paths[CPU][c].count;
- if (cpuIndex == -1 || nHops < minHops) {
- cpuIndex = c;
- minHops = nHops;
- }
- }
- cpu = system->nodes[CPU].nodes+cpuIndex;
- }
- }
- if (cpu == NULL) {
- WARN("Set CPU affinity : unable to find GPU/CPU for rank %d", rank);
- return ncclInternalError;
- }
-
- // Query the CPU affinity set we were provided
- cpu_set_t mask;
- SYSCHECK(sched_getaffinity(0, sizeof(cpu_set_t), &mask), "sched_getaffinity");
-
- // Get the affinity of the CPU close to our GPU.
- cpu_set_t cpuMask = cpu->cpu.affinity;
-
- cpu_set_t finalMask;
- if (ncclParamIgnoreCpuAffinity())
- // Ignore the CPU affinity set and use the GPU one instead
- finalMask = cpuMask;
- else
- // Use a subset of the GPU affinity set
- CPU_AND(&finalMask, &mask, &cpuMask);
-
- // If there is a non empty set, use it to set affinity
- if (CPU_COUNT(&finalMask)) {
- char affinityStr[sizeof(cpu_set_t)*2];
- NCCLCHECK(ncclCpusetToStr(&finalMask, affinityStr));
- INFO(NCCL_INIT, "Setting affinity for GPU %d to %s", gpu->gpu.dev, affinityStr);
- SYSCHECK(sched_setaffinity(0, sizeof(cpu_set_t), &finalMask), "sched_setaffinity");
- }
- return ncclSuccess;
- }
首先获取当前线程的cpu亲和性保存到affinitySave,分配好buffer之后会用affinitySave来恢复亲和性。
然后通过ncclTopoSetAffinity设置cpu亲和性,找到当前rank对应的cpu节点之后,可以获取到该cpu对应的core,即cpuMask,然后获取当前线程对应的亲和性,即mask,默认会取cpuMask和mask的交集finalMask,如果交集不为空的话,会将finalMask设置给当前线程。
- struct ncclConnect {
- char data[CONNECT_SIZE];
- };
-
- struct ncclConnect *connect;
- NCCLCHECKGOTO(ncclCalloc(&connect, 2), ret, affinity_restore);
- for (int c=0; c
nChannels; c++) { - struct ncclChannel* channel = comm->channels+c;
- NCCLCHECKGOTO(setupChannel(comm, c, rank, nranks, rings+c*nranks), ret, affinity_restore);
- if (comm->nRanks == 1) continue;
- NCCLCHECKGOTO(ncclTransportP2pSetup(comm, &ringGraph, channel, 1, &channel->ring.prev, 1, &channel->ring.next), ret, affinity_restore);
- ...
- }
然后简单看下ncclChannel数据结构,其中collectives保存了用户向nccl提交的通信操作,比如ncclSend,ncclRecv等都会向collectives里加一项,ncclColl则保存了这些操作对应的参数;collectives是一个环形队列,所以collStart指向了开始位置,collCount表示队列中操作数量;FifoHead和FifoTail用于协调kernel产出数据和NET发送数据,其实就是生产者消费者,ncclPeer保存了通信相关的信息,后续再具体介绍。
- struct ncclRing {
- // Shortcuts for userRanks[1] and userRanks[n-1]
- int prev; // 记录环中当前rank的上一个rank
- int next; // 记录环中当前rank的下一个rank
-
- // Maps an internal nccl index to user-specified rank order. This is necessary
- // since we need to know how the user expects data to be ordered across
- // devices. Ordered from current device.
- int* userRanks; // 以当前rank为起点记录整个环
- int* devUserRanks; // device断的userRanks
- };
-
- struct ncclChannel {
- union {
- struct {
- struct ncclRing ring;
- struct ncclTree treeUp;
- struct ncclTree treeDn;
- struct ncclTree collTreeUp;
- struct ncclTree collTreeDn;
-
- int id;
-
- // Communication structures
- struct ncclPeer* peers;
- struct ncclPeer* devPeers;
-
- // Operation list for aggregation
- struct ncclColl* collectives;
- int collStart;
- int collCount;
- int collFifoHead; // Only used by GPU
- int collFifoTail; // Only used by CPU
- };
- int data[0x80];
- };
- };
然后开始初始化channel,initChannel主要是buffer的分配,分配userRanks和devUserRanks,设置ncclPeer,分配collectives,因为host和device都会访问collectives这个数据结构,所以需要通过cudaHostAlloc分配host端的锁页内存,并通过flag cudaHostAllocMapped将其映射到cuda的地址空间。不过在uva系统上,cudaMallocHost,cudaHostAlloc + cudaHostAllocDefault以及cudaHostAlloc + cudaHostAllocMapped这三种方式没啥区别,host和device都可以访问。
- ncclResult_t initChannel(struct ncclComm* comm, int channelid) {
- struct ncclChannel* channel = comm->channels+channelid;
- if (channel->id != -1) return ncclSuccess;
- channel->id = channelid;
-
- // Ring index to user rank table.
- NCCLCHECK(ncclCudaCalloc(&channel->ring.devUserRanks, comm->nRanks));
- NCCLCHECK(ncclCalloc(&channel->ring.userRanks, comm->nRanks));
-
- // Communication structures with peers.
- NCCLCHECK(ncclCudaCalloc(&channel->devPeers, comm->nRanks+1)); // The extra one rank is for collnet root (i.e. network)
- NCCLCHECK(ncclCalloc(&channel->peers, comm->nRanks+1));
- for (size_t i=0; i
nRanks+1; ++i) { - channel->peers[i].send.comm = comm;
- channel->peers[i].recv.comm = comm;
- }
-
- // Per-channel operation list.
- NCCLCHECK(ncclCudaHostCalloc(&channel->collectives, NCCL_MAX_OPS));
- return ncclSuccess;
- }
-
- template
- static ncclResult_t ncclCudaHostCalloc(T** ptr, size_t nelem) {
- CUDACHECK(cudaHostAlloc(ptr, nelem*sizeof(T), cudaHostAllocMapped));
- memset(*ptr, 0, nelem*sizeof(T));
- return ncclSuccess;
- }
然后从当前rank为起点,将环写到userRanks。
- static ncclResult_t setupChannel(struct ncclComm* comm, int channelId, int rank, int nranks, int* ringRanks) {
- TRACE(NCCL_INIT, "rank %d nranks %d", rank, nranks);
- NCCLCHECK(initChannel(comm, channelId));
-
- struct ncclRing* ring = &comm->channels[channelId].ring;
- // Reorganize ranks to start with rank.
- int shift;
- for (shift = 0; shift
shift++) { - if (ringRanks[shift] == rank) {
- break;
- }
- }
- for (int i=0; i
- ring->userRanks[i] = ringRanks[(i+shift)%nranks];
- }
- return ncclSuccess;
- }
然后执行ncclTransportP2pSetup建立当前rank和prev,next的通信链路。
到这里就完成了机器之间channel的连接,下节会了解到通信链路的建立过程。
(本文经授权后由OneFlow发布。原文:https://blog.csdn.net/KIDGIN7439/article/details/128144057)
其他人都在看
-
-
-
-
-
-
-
试用OneFlow: github.com/Oneflow-Inc/oneflow/

-
相关阅读:
基于Spring接口,集成Caffeine+Redis两级缓存
【每日一题】最大矩形
javaEE -9(7000字详解TCP/IP协议)
异步 IO 机制 io_uring
【Python机器学习】零基础掌握SpectralCoclustering聚类
10.一键生成个人微信朋友圈数据电子书
JDBC一般使用过程+两种statement的区别
官网电子安全证书端口即将到期!新型诈骗短信!
【线性代数】MIT Linear Algebra Lecture 2: Elimination with matrices
武汉新时标文化传媒有限公司短视频用户规模达9.54亿
-
原文地址:https://blog.csdn.net/OneFlow_Official/article/details/133191624