• 使用huggingface的text embedding models


    from langchain_core.prompts import ChatPromptTemplate
    from langchain_core.output_parsers import StrOutputParser
    from langchain_community.vectorstores import FAISS
    from langchain_community.llms import Tongyi
    from langchain_core.runnables import RunnableParallel, RunnablePassthrough
    from langchain_community.embeddings import HuggingFaceEmbeddings
    import os
    import time
    os.environ["DASHSCOPE_API_KEY"] = "sk-cc1c8314fdbd43ceaf26ec1824d5dd3b"
    llm = Tongyi()
    
    from langchain_community.document_loaders import UnstructuredURLLoader
    
    embeddings = HuggingFaceEmbeddings()
    
    # 记录开始时间
    start_time = time.time()
    text = "This is a test document."
    
    query_result = embeddings.embed_query(text)
    
    end_time = time.time()
    # 计算并打印函数执行时间
    execution_time = end_time - start_time
    print(f"函数执行时间: {execution_time} 秒")
    print(query_result[:3])
    
    
    urls = [
        "https://en.wikipedia.org/wiki/Android_(operating_system)"
    ]
    
    loader = UnstructuredURLLoader(urls=urls)
    documents = loader.load_and_split()
    # print(documents)
    
    
    # # 第一次存入本地
    # vectorstore = FAISS.from_documents(documents, embeddings)
    # vectorstore.save_local("faiss_index2")
    
    
    # 记录开始时间
    start_time = time.time()
    
    # # 从本地加载
    vectorstore = FAISS.load_local("faiss_index2", embeddings)
    
    retriever = vectorstore.as_retriever()
    template = """Answer the question based on the context below. If the
    question cannot be answered using the information provided answer
    with "I don't know"     
    
    Context: {context}
    
    Question: {question}
    """
    prompt = ChatPromptTemplate.from_template(template)
    
    output_parser = StrOutputParser()
    setup_and_retrieval = RunnableParallel(
        {"context": retriever, "question": RunnablePassthrough()}
    )
    chain = setup_and_retrieval | prompt | llm | output_parser
    print(chain.invoke("what is android"))
    # 计算并打印函数执行时间
    end_time = time.time()
    execution_time = end_time - start_time
    print(f"函数执行时间: {execution_time} 秒")
    
    
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72

    上面是使用的默认的模型,以下指定使用 all-MiniLM-L6-v2:

    from langchain_core.prompts import ChatPromptTemplate
    from langchain_core.output_parsers import StrOutputParser
    from langchain_community.vectorstores import FAISS
    from langchain_community.llms import Tongyi
    from langchain_core.runnables import RunnableParallel, RunnablePassthrough
    from langchain_community.embeddings import HuggingFaceEmbeddings
    import os
    import time
    os.environ["DASHSCOPE_API_KEY"] = "sk-cc1c8314fdbd43ceaf26ec1824d5dd3b"
    llm = Tongyi()
    
    from langchain_community.document_loaders import UnstructuredURLLoader
    model_name = "all-MiniLM-L6-v2"
    embeddings = HuggingFaceEmbeddings(
             model_name=model_name,
    )
    
    # 记录开始时间
    start_time = time.time()
    text = "This is a test document."
    
    query_result = embeddings.embed_query(text)
    
    end_time = time.time()
    # 计算并打印函数执行时间
    execution_time = end_time - start_time
    print(f"函数执行时间: {execution_time} 秒")
    print(query_result[:3])
    
    
    urls = [
        "https://en.wikipedia.org/wiki/Android_(operating_system)"
    ]
    
    loader = UnstructuredURLLoader(urls=urls)
    documents = loader.load_and_split()
    # print(documents)
    
    
    # 记录开始时间
    start_time = time.time()
    
    # 第一次存入本地
    vectorstore = FAISS.from_documents(documents, embeddings)
    vectorstore.save_local("faiss_index2")
    
    
    # # 从本地加载
    # vectorstore = FAISS.load_local("faiss_index2", embeddings)
    
    retriever = vectorstore.as_retriever()
    template = """Answer the question based on the context below. If the
    question cannot be answered using the information provided answer
    with "I don't know"     
    
    Context: {context}
    
    Question: {question}
    """
    prompt = ChatPromptTemplate.from_template(template)
    
    output_parser = StrOutputParser()
    setup_and_retrieval = RunnableParallel(
        {"context": retriever, "question": RunnablePassthrough()}
    )
    chain = setup_and_retrieval | prompt | llm | output_parser
    print(chain.invoke("what is android"))
    # 计算并打印函数执行时间
    end_time = time.time()
    execution_time = end_time - start_time
    print(f"函数执行时间: {execution_time} 秒")
    
    
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74

    关于可以使用的模型,可以看这里

  • 相关阅读:
    Oauth2系列6:隐式模式
    Math对象和Date对象常用方法
    Springboot 打包神器Maven 保姆级教程
    逻辑回归原理
    v-model的修饰符
    Qt的复杂代理使用总结
    需要多久才能看完linux内核源码?
    彻底弄懂Java中的MultipartFile接口和File类
    【LeetCode每日一题:1684. 统计一致字符串的数目~~~字符串+遍历+模拟+计数】
    职场经验:为什么要学习自动化测试?过来人告诉你答案
  • 原文地址:https://blog.csdn.net/oHeHui1/article/details/136323326