• 欢迎 Gemma: Google 最新推出开源大语言模型


    aab1479238483f4cebdddb3882f71c93.png

    今天,Google 发布了一系列最新的开放式大型语言模型 —— Gemma!Google 正在加强其对开源人工智能的支持,我们也非常有幸能够帮助全力支持这次发布,并与 Hugging Face 生态完美集成。

    Gemma 提供两种规模的模型:7B 参数模型,针对消费级 GPU 和 TPU 设计,确保高效部署和开发;2B 参数模型则适用于 CPU 和移动设备。每种规模的模型都包含基础版本和经过指令调优的版本。

    我们与 Google 紧密合作,确保 Gemma 能够无缝集成到 Hugging Face 的生态系统中。在 Hub 上,你可以找到这四个公开可访问的模型(包括两个基础模型和两个经过调优的模型)。此次发布的亮点包括:

    • Hub 上的模型,包括模型说明和授权信息

    • 🤗 Transformers 的集成

    • 与 Google Cloud 的深度集成

    • 与推理端点 (Inference Endpoints) 的集成

    • 使用 🤗 TRL 在单个 GPU 上对 Gemma 进行微调的示例

    Gemma 是什么?

    Gemma 是 Google 基于 Gemini 技术推出的四款新型大型语言模型(LLM),提供了 2B 和 7B 两种不同规模的版本,每种都包含了预训练基础版本和经过指令优化的版本。所有版本均可在各类消费级硬件上运行,无需数据量化处理,拥有高达 8K tokens 的处理能力:

    • gemma-7b:7B 参数的基础模型。

    • gemma-7b-it:7B 参数的指令优化版本。

    • gemma-2b:2B 参数的基础模型。

    • gemma-2b-it:2B 参数的指令优化版本。

    1acd62a180320a025443c80279db0301.png

    Gemma 模型的性能如何?以下是其基础版本与其他开放模型在 LLM 排行榜 上的比较(得分越高越好):

    模型许可证商业使用预训练大小 [tokens]排行榜分数 ⬇️
    LLama 2 70B Chat (参考)Llama 2 许可证2T67.87
    Gemma-7BGemma 许可证6T63.75
    DeciLM-7BApache 2.0未知61.55
    PHI-2 (2.7B)MIT1.4T61.33
    Mistral-7B-v0.1Apache 2.0未知60.97
    Llama 2 7BLlama 2 许可证2T54.32
    Gemma 2BGemma 许可证2T46.51

    在 7B 参数级别,Gemma 表现出色,与市场上最佳模型如 Mistral 7B 不相上下。而 2B 版本的 Gemma 虽然规模较小,但在其类别中的表现也颇具竞争力,尽管在排行榜上的得分并未超越类似规模的顶尖模型,例如 Phi 2。我们期待社区对这些模型的真实使用反馈,以进一步优化和调整。

    需要浅浅再强调一下:LLM 排行榜特别适用于衡量预训练模型的质量,而不太适用于聊天模型。我们鼓励对聊天模型运行其他基准测试,如 MT Bench、EQ Bench 和 lmsys Arena。

    Prompt 提示词格式

    Gemma 的基础模型不限定特定的提示格式。如同其他基础模型,它们能够根据输入序列生成一个合理的续接内容,适用于零样本或少样本的推理任务。这些模型也为针对特定应用场景的微调提供了坚实的基础。指令优化版本则采用了一种极其简洁的对话结构:

    1. user
    2. knock knock
    3. model
    4. who is there
    5. user
    6. LaMDA
    7. model
    8. LaMDA who?

    要有效利用这一格式,必须严格按照上述结构进行对话。我们将演示如何利用 transformers 库中提供的聊天模板简化这一过程。

    探索未知领域

    尽管技术报告提供了关于基础模型训练和评估过程的信息,但关于数据集构成和预处理的具体细节则较为欠缺。据悉,这些模型是基于来自互联网文档、编程代码和数学文本等多种数据源训练而成,经过严格筛选,以排除含有敏感信息和不适内容的数据。

    对于 Gemma 的指令优化模型,关于微调数据集以及与顺序微调技术(SFT)和 基于人类反馈的强化学习(RLHF)相关的超参数设置,细节同样未公开。

    演示

    现在,你可以在 Hugging Chat 上体验与 Gemma 指令模型的互动对话!点击此处访问:
    https://hf.co/chat?model=google/gemma-7b-it

    使用 🤗 Transformers

    借助 Transformers 的 4.38 版本,你可以轻松地使用 Gemma 模型,并充分利用 Hugging Face 生态系统内的工具,包括:

    • 训练和推理脚本及示例

    • 安全文件格式(safetensors

    • 集成了诸如 bitsandbytes(4位量化)、PEFT(参数效率微调)和 Flash Attention 2 等工具

    • 辅助工具和帮助器,以便使用模型进行生成

    • 导出模型以便部署的机制

    另外,Gemma 模型支持 torch.compile() 与 CUDA 图的结合使用,在推理时可实现约 4 倍的速度提升!

    确保你使用的是最新版本的 transformers

    pip install -U "transformers==4.38.0" --upgrade

    以下代码片段展示了如何结合 transformers 使用 gemma-7b-it。运行此代码需大约 18 GB 的 RAM,适用于包括 3090 或 4090 在内的消费级 GPU。

    1. from transformers import AutoTokenizer, pipeline
    2. import torch
    3. model = "google/gemma-7b-it"
    4. tokenizer = AutoTokenizer.from_pretrained(model)
    5. pipeline = pipeline(
    6.     "text-generation",
    7.     model=model,
    8.     model_kwargs={"torch_dtype": torch.bfloat16},
    9.     device="cuda",
    10. )
    11. messages = [
    12.         {"role""user""content""Who are you? Please, answer in pirate-speak."},
    13. ]
    14. prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    15. outputs = pipeline(
    16.     prompt,
    17.     max_new_tokens=256,
    18.     add_special_tokens=True,
    19.     do_sample=True,
    20.     temperature=0.7,
    21.     top_k=50,
    22.     top_p=0.95
    23. )
    24. print(outputs[0]["generated_text"][len(prompt):])

    Avast me, me hearty. I am a pirate of the high seas, ready to pillage and plunder. Prepare for a tale of adventure and booty!

    简单介绍一下这段代码:

    • 代码段展示了如何利用 bfloat16 数据类型进行模型推理,该数据类型是所有评估中使用的参考精度。如果你的硬件支持,使用 float16 可能会更快。

    • 你还可以将模型自动量化,以 8 位或 4 位模式加载。以 4 位模式加载模型大约需要 9 GB 的内存,使其适用于多种消费级显卡,包括 Google Colab 上的所有 GPU。以下是以 4 位加载生成 pipeline 的方法:

    1. pipeline = pipeline(
    2.     "text-generation",
    3.     model=model,
    4.     model_kwargs={
    5.         "torch_dtype": torch.float16,
    6.         "quantization_config": {"load_in_4bit": True}
    7.     },
    8. )

    更多关于如何使用 transformers 和模型的详情,请参阅 模型卡片。

    JAX 权重

    所有 Gemma 模型变种都可以用 PyTorch 或 JAX / Flax 使用。若要加载 Flax 权重,你需要按照以下方式使用仓库中的 flax 修订版本:

    1. import jax.numpy as jnp
    2. from transformers import AutoTokenizer, FlaxGemmaForCausalLM
    3. model_id = "google/gemma-2b"
    4. tokenizer = AutoTokenizer.from_pretrained(model_id)
    5. tokenizer.padding_side = "left"
    6. model, params = FlaxGemmaForCausalLM.from_pretrained(
    7.         model_id,
    8.         dtype=jnp.bfloat16,
    9.         revision="flax",
    10.         _do_init=False,
    11. )
    12. inputs = tokenizer("Valencia and Málaga are", return_tensors="np", padding=True)
    13. output = model.generate(inputs, params=params, max_new_tokens=20, do_sample=False)
    14. output_text = tokenizer.batch_decode(output.sequences, skip_special_tokens=True)

    ['Valencia and Málaga are two of the most popular tourist destinations in Spain. Both cities boast a rich history, vibrant culture,']

    如果你在 TPU 或多个 GPU 设备上运行,可以利用 jitpmap 来编译和并行执行推理任务。

    与 Google Cloud 集成

    你可以通过 Vertex AI 或 Google Kubernetes Engine (GKE) 在 Google Cloud 上部署和训练 Gemma,利用 文本生成推理 和 Transformers 实现。

    要从 Hugging Face 部署 Gemma 模型,请访问模型页面并点击部署 -> Google Cloud。这将引导你进入 Google Cloud Console,在那里你可以通过 Vertex AI 或 GKE 一键部署 Gemma。文本生成推理为 Gemma 在 Google Cloud 上的部署提供支持,这是我们与 Google Cloud 合作伙伴关系的初步成果。

    1418e2d84b95c8c321d53d12ab00009e.png

    你也可以通过 Vertex AI Model Garden 直接访问 Gemma。

    要在 Hugging Face 上微调 Gemma 模型,请访问 模型页面 并点击 训练 -> Google Cloud。这将引导你进入 Google Cloud Console,在那里你可以在 Vertex AI 或 GKE 上访问笔记本,以在这些平台上微调 Gemma。

    90c3d9c6bebef4a3162f5339c8778506.png

    这些集成是我们 与 Google 合作伙伴关系成果的一部分,未来还会有更多精彩内容发布,敬请期待!

    与推理端点集成

    你可以在 Hugging Face 的 推理端点 上部署 Gemma,该端点使用文本生成推理作为后端。文本生成推理 是由 Hugging Face 开发的可用于生产环境的推理容器,旨在简化大型语言模型的部署。它支持连续批处理、令牌流式传输、多 GPU 张量并行加速推理,并提供生产就绪的日志记录和跟踪功能。

    要部署 Gemma 模型,请访问 HF Hub 模型页面 并点击 部署 -> 推理端点。有关 使用 Hugging Face 推理端点部署 LLM的更多信息,请参阅我们之前的博客文章。推理端点通过文本生成推理支持 消息 API,使你可以通过简单地更换 URL 从其他封闭模型切换到开放模型。

    1. from openai import OpenAI
    2. # initialize the client but point it to TGI
    3. client = OpenAI(
    4.     base_url="" + "/v1/",  # replace with your endpoint url
    5.     api_key="",  # replace with your token
    6. )
    7. chat_completion = client.chat.completions.create(
    8.     model="tgi",
    9.     messages=[
    10.         {"role""user""content""Why is open-source software important?"},
    11.     ],
    12.     stream=True,
    13.     max_tokens=500
    14. )
    15. # iterate and print stream
    16. for message in chat_completion:
    17.     print(message.choices[0].delta.content, end="")

    使用 🤗 TRL 进行微调

    在消费级 GPU 上训练大型语言模型既是技术上的挑战,也是计算上的挑战。本节将介绍 Hugging Face 生态系统中可用的工具,这些工具可以帮助你高效地在消费级 GPU 上训练 Gemma。

    一个微调 Gemma 的示例命令如下。我们利用 4 位量化和 QLoRA(一种参数效率微调技术)来减少内存使用,目标是所有注意力块的线性层。值得注意的是,与密集型 Transformer 不同,MLP 层(多层感知器层)因其稀疏性不适合与 PEFT(参数效率微调)技术结合使用。

    首先,安装 🤗 TRL 的最新版本并克隆仓库以获取 训练脚本:

    1. pip install -U transformers
    2. pip install git+https://github.com/huggingface/trl
    3. git clone https://github.com/huggingface/trl
    4. cd trl

    然后运行脚本:

    1. accelerate launch --config_file examples/accelerate_configs/multi_gpu.yaml --num_processes=1 \
    2.     examples/scripts/sft.py \
    3.     --model_name google/gemma-7b \
    4.     --dataset_name OpenAssistant/oasst_top1_2023-08-25 \
    5.     --batch_size 2 \
    6.     --gradient_accumulation_steps 1 \
    7.     --learning_rate 2e-4 \
    8.     --save_steps 20_000 \
    9.     --use_peft \
    10.     --peft_lora_r 16 --peft_lora_alpha 32 \
    11.     --target_modules q_proj k_proj v_proj o_proj \
    12.     --load_in_4bit

    在单个 A10G GPU 上,这个训练过程大约需要 9 小时。通过调整 --num_processes 参数为你可用的 GPU 数量,可以实现并行化训练,从而缩短训练时间。

    额外资源

    • Hub 上的模型

    • 开放 LLM 排行榜

    • Hugging Chat 上的聊天演示

    • Gemma 官方博客

    • Gemma 产品页面

    • Vertex AI 模型花园链接

    • Google Notebook 教程

    致谢

    此次发布和在生态系统中的集成是由包括 Clémentine、Eleuther 评估工具(LLM 评估)、Olivier、David(文本生成推理支持)、Simon(在 Hugging Face 上开发新的访问控制特性)、Arthur、Younes、Sanchit(将 Gemma 集成到 transformers 中)、Morgan(将 Gemma 集成到 optimum-nvidia,即将推出)、Nathan、Victor、Mishig(使 Gemma 在 Hugging Chat 上可用)等众多社区成员的共同努力而成。

    我们特别感谢 Google 团队发布 Gemma 并使其在开源 AI 社区中可用,为推动开放式人工智能发展做出了重要贡献。

    查看本文链接,请点击阅读原文在 Hugging Face 博客上查看:
    https://hf.co/blog/zh/gemma

  • 相关阅读:
    基于Struts开发简单的留言板(BBS论坛)系统
    Visual Studio Code将中文写入变量时,中文老是乱码问题
    欧拉公式的证明
    angular bug
    15-js运动函数和轮播图
    JavaEE进阶学习:Spring核心和设计思想
    Java开发学习(三十四)----Maven私服(二)本地仓库访问私服配置与私服资源上传下载
    CSS学习(3)-浮动和定位
    下载离线地图地形数据库(3D离线地图开发)
    Node Sass does not yet support your current environment
  • 原文地址:https://blog.csdn.net/HuggingFace/article/details/136246269