微电网优化模型介绍:
多目标粒子群优化算法MOPSO简介:
(1)部分代码
close all; clear ; clc; global P_load; %电负荷 global WT;%风电 global PV;%光伏 %% addpath('./MOPSO/')%添加算法路径 TestProblem=1; MultiObj = GetFunInfo(TestProblem); MultiObjFnc=MultiObj.name;%问题名 % Parameters params.Np = 100; % Population size params.Nr = 200; % Archive size params.maxgen = 200; % Maximum number of iteration params.ngrid = 20; % Number of grids in each dimension [Xbest,Fbest] = MOPSO(params,MultiObj); %% 画结果图ParetoFont figure(1) plot(Fbest(:,1),Fbest(:,2),'go'); legend('MOPSO'); xlabel('运行成本') ylabel('环境保护成本') saveas(gcf,'./Picture/ParetoFont.jpg') %将图片保存到Picture文件夹下面 %% 比较不同目标函数寻优对调度结果的影响 %idxn=1 第1种.将两个目标函数值归一化相加,取相加后最小的目标值的粒子,即寻找折衷解并画图 %idxn=2 第2种寻找总成本最低时的解并画图 %idxn=3 第3种寻找运行成本最低时的解并画图 %idxn=4 第4种寻找环境保护成本最低时的解并画图 for idxn=1:4 pg=plotFigure(Xbest,Fbest,idxn); end
(2)部分结果
pareto前沿:
第1种.将两个目标函数值归一化相加,取相加后最小的目标值的粒子,即寻找折衷解并画图
第2种寻找总成本最低时的解并画图
第3种寻找运行成本最低时的解并画图
第4种寻找环境保护成本最低时的解并画图