给你一个整数数组 nums
和一个整数 k
,找出三个长度为 k
、互不重叠、且全部数字和(3 * k
项)最大的子数组,并返回这三个子数组。
以下标的数组形式返回结果,数组中的每一项分别指示每个子数组的起始位置(下标从 0 开始)。如果有多个结果,返回字典序最小的一个。
示例 1:
输入:nums = [1,2,1,2,6,7,5,1], k = 2 输出:[0,3,5] 解释:子数组 [1, 2], [2, 6], [7, 5] 对应的起始下标为 [0, 3, 5]。 也可以取 [2, 1], 但是结果 [1, 3, 5] 在字典序上更大。
示例 2:
输入:nums = [1,2,1,2,1,2,1,2,1], k = 2 输出:[0,2,4]
提示:
1 <= nums.length <= 2 * 104
1 <= nums[i] < 216
1 <= k <= floor(nums.length / 3)
- class Solution {
- public int[] maxSumOfOneSubarray(int[] nums, int k) {
- int[] ans = new int[1];
- int sum1 = 0, maxSum1 = 0;
- for (int i = 0; i < nums.length; ++i) {
- sum1 += nums[i];
- if (i >= k - 1) {
- if (sum1 > maxSum1) {
- maxSum1 = sum1;
- ans[0] = i - k + 1;
- }
- sum1 -= nums[i - k + 1];
- }
- }
- return ans;
- }
- }
- class Solution {
- public int[] maxSumOfTwoSubarrays(int[] nums, int k) {
- int[] ans = new int[2];
- int sum1 = 0, maxSum1 = 0, maxSum1Idx = 0;
- int sum2 = 0, maxSum12 = 0;
- for (int i = k; i < nums.length; ++i) {
- sum1 += nums[i - k];
- sum2 += nums[i];
- if (i >= k * 2 - 1) {
- if (sum1 > maxSum1) {
- maxSum1 = sum1;
- maxSum1Idx = i - k * 2 + 1;
- }
- if (maxSum1 + sum2 > maxSum12) {
- maxSum12 = maxSum1 + sum2;
- ans[0] = maxSum1Idx;
- ans[1] = i - k + 1;
- }
- sum1 -= nums[i - k * 2 + 1];
- sum2 -= nums[i - k + 1];
- }
- }
- return ans;
- }
- }
- class Solution {
- public int[] maxSumOfThreeSubarrays(int[] nums, int k) {
- int[] ans=new int[3];
- int sum1=0,maxSum1=0,maxSum1Idx=0;
- int sum2=0,maxSum12=0,maxSum12Idx1=0,maxSum12Idx2=0;
- int sum3=0,maxTotal=0;
- for(int i=2*k;i<nums.length;i++){
- sum1+=nums[i-2*k];
- sum2+=nums[i-k];
- sum3+=nums[i];
- if(i>=3*k-1){
- if(sum1>maxSum1){
- maxSum1=sum1;
- maxSum1Idx=i-3*k+1;
- }
- if(maxSum1+sum2>maxSum12){
- maxSum12=maxSum1+sum2;
- maxSum12Idx1=maxSum1Idx;
- maxSum12Idx2=i-2*k+1;
- }
- if(maxSum12+sum3>maxTotal){
- maxTotal=maxSum12+sum3;
- ans[0]=maxSum12Idx1;
- ans[1]=maxSum12Idx2;
- ans[2]=i-k+1;
- }
- sum1-=nums[i-3*k+1];
- sum2-=nums[i-2*k+1];
- sum3-=nums[i-k+1];
- }
- }
- return ans;
- }
- }