项目视频讲解:
基于机器学习的居民消费影响因子分析预测_哔哩哔哩_bilibili
- import pandas as pd
- import numpy as np
- import matplotlib.pyplot as plt
- import seaborn as sns
- import missingno as msno
- import warnings
- warnings.filterwarnings('ignore')
-
- #设置字体为SimHei显示中文
- plt.rcParams['font.sans-serif'] = 'SimHei'
-
- #设置正常显示负号字符
- plt.rcParams['axes.unicode_minus'] = False
-
- # 读取数据
- data = pd.read_csv('pay_gap_Europe.csv')
-
- data.sample(10)
-
- # 检查缺失值
- missing_values = data.isnull().sum()
- missing_values = missing_values[missing_values > 0].sort_values(ascending=False)
-
- # 缺失占比
- missing_percentage = (missing_values / len(data)) * 100
-
- missing_data