
解法:
将01序列置于坐标轴上,起始点为原点。0表示向右走,1表示向上走。这样就可以将前缀0的个数不少于1的个数就可以转换为路径上的点,横坐标大于纵坐标,也就是求合法路径个数。

注意题目mod的数是质数,所以可以使用快速幂求逆元,若不是质数,则需要使用扩展欧几里得算法求逆元。
快速幂:
- //01序列 卡特兰数
- #include
- using namespace std;
- using ll = long long;
- const ll mod = 1e9 + 7;
-
- //因为mod的数是质数可以用快速幂
- //如果不是质数就用扩展欧几里得
- ll qmi(ll a, ll k, ll p)
- {
- ll res = 1;
-
- while (k)
- {
- if (k & 1) res = res * a % p;
- a = a * a % p;
- k >>= 1;
- }
- return res;
- }
- //答案为C2n n /n + 1
- int main()
- {
- ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
- ll n; cin >> n;
-
- ll a = 2 * n, b = n, res = 1;
-
- for (ll i = a; i > a - b; --i) res = res * i % mod;
- for (ll i = 1; i <= b; ++i) res = res * qmi(i, mod - 2, mod) % mod;
-
- res = res * qmi(n + 1, mod - 2, mod) % mod;
- cout << res;
- return 0;
- }
扩展欧几里得:
- //01序列 扩展欧几里得
- #include
- using namespace std;
- using ll = long long;
- const ll mod = 1e9 + 7;
-
- ll exgcd(ll a, ll b, ll& x, ll& y)
- {
- if (!b)
- {
- x = 1, y = 0;
- return a;
- }
-
- ll d = exgcd(b, a % b, y, x);
- y -= a / b * x % mod;
- return d;
- }
-
- int main()
- {
- ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
-
- ll n, x, y; cin >> n;
- ll a = 2 * n, b = n;
- ll res = 1;
-
- for (ll i = a; i > a - b; --i) res = res * i % mod;
- for (ll i = 1; i <= b; ++i)
- {
- exgcd(i, mod, x, y);
- res = res * x % mod;
- }
- exgcd(n + 1, mod, x, y);
- res = (res * x % mod + mod) % mod;
- cout << res;
- return 0;
- }