• FSOD论文阅读 - 基于卷积和注意力机制的小样本目标检测


    来源:知网

    标题:基于卷积和注意力机制的小样本目标检测
    作者:郭永红,牛海涛,史超,郭铖

    郭永红,牛海涛,史超,郭铖.基于卷积和注意力机制的小样本目标检测 [J/OL].兵工学报. https://link.cnki.net/urlid/11.2176.TJ.20231108.1418.002

    摘要

    1. 典型的FSOD使用Fast R-CNN作为基本的检测框架
    2. 本文亮点:引入混合扩张卷积确保更大的感受野并减少图像信息的损失;提出支持特征动态融合模块,以每个支持特征和查询特征之间的相关性为权重,自适应地融合支持特征

    引言

    1. 早期的FSOD算法遵循元学习范式,首先对训练数据进行采样,然后利用元学习方法训 练FSOD任务的模型,但是元学习器在学习迭代过程中容 易出现非收敛问题(学习算法无法达到一个稳定的解或最优解的状态)
    2. 基于微调的FSOD方法可有效解决非收敛问题(主要是因为这些方法利用了预先训练好的模型和知识,从而在面对有限数据时更有效地学习和适应新任务),基于微调的FSOD方法首先在大 规模基础类数据集上训练检测器,在微调过程中, 主干网络参数可被重用或冻结,而只有Box分类器和回归器是用新数据训练的
    3. Faster R-CNN算法:主要由三部分组成 - 特征提取器、区域候选网络(RPN)和检测头。
    4. Fast R-CNN的工作流程:特征提取器使用卷积神经网络来获得输入图像的feature maps。RPN将feature maps作为输入生成 候选框,并对候选框进行二元分类和粗略回归,将 分类好的候选框映射到feature maps得到感兴趣区域 (RoI)的特征矩阵,发送给后续检测网络,最后由 检测头输出分类和回归的结果
    5. 现有的二阶 段检测算法仍然存在两个明显的缺点。总结就是1、采样过程中的信息丢失. 2、用均值得到的类别融合特征向量会丢失信息
    6. 为解决以上两个问题,文章提出两个方法:1、在主干网络中引入混 合扩张卷积(HDC),以增加感受野. 2、提出了支持特征动态融合(SFDF)模块,使用每个支持特征和查询特征之间的相似性作为权重,动态地融合支持特征,充分利用支持数据

    FSOD 任务概述

    1. 一阶段检测算法 - 使用主干网络对图像进行特征提取,直接对特征图像进行分类和回归,例如SSD、YOLO,优点是快,缺点是定位精度低
    2. 二阶段检测算法 - 先找到可能包含目标的RoI,然后对区域进行分类和回归,例如Fast R-CNN,优点是定位精度高,缺点是慢
    3. 综上,在做迁移学习的FSOD时,可以考虑使用以上模型做为基准模型,然后魔改模型中的某部分(本文就是这么干的),然后找到一个baseline,做效率对比
    4. 已有算法:Meta R-CNN(基于transformer)、TFA、MPSR、FSCE、CME、DeFRCN(回头可以考虑使用以上算法做为baseline然后魔改自己的模型测试性能提升)

    基于卷积和注意力机制网络结构

    1. N-way K-shot: N个类别,每个类别K个样本
    2. 文章的主干网络是ResNet-101,在主干网络中加入HDC(混合扩张卷积模块)和SFDF(支持特征动态融合模块),模型示意图如下:在这里插入图片描述
    3. HDC模块:混合扩张卷积(扩张卷积:在卷积核之间引入空间,扩大卷积覆盖的范围),本文引入了一个(1, 2, 5)的扩张卷积,对比起(2, 2, 2)的扩张卷积来,感受野的范围更大,且保留了图像信息的连续性:在这里插入图片描述
    4. 扩张卷积引入了间隔,那么扩张卷积是如何保证图像信息不丢失的呢? - 卷积在滑动的过程中会走过每个像素:保证参数不变的同时扩大了感受野.
    5. SFDF模块:该模块首先计算查询特征与支持 集中每一类的每个特征之间的相似度,然后将该系数作为权重,对支持集中每一类的每个特征进行加权求和操作,这样生成的支持集特征可以包含对象最有鉴别性的信息

    实验

    1. 使用 ImageNet 数据集上预训练 ResNet101 作为原始模型,使用 RoI Align 作为 RoI 特征提 取器
  • 相关阅读:
    HTML+CSS简单漫画网页设计成品--(红猪(9页)带注释)
    基于 STM32自研多任务+SpringBoot+Vue 农业大棚智能调光系统
    深度学习入门(十) 模型选择、过拟合和欠拟合
    刷题12.3
    台达PLC出现故障该怎么进行远程维护和程序上下载?
    OpenCL专题04:ViennaCL与Eigen双剑合璧
    DevOps(十二)Jenkins实战之Web发布到远程服务器
    解密地理位置模拟攻防之道
    Spring源码解析——事务的回滚和提交
    美团笔试真题2023第一场(4题)
  • 原文地址:https://blog.csdn.net/qq_44197482/article/details/134424863