本篇文章即将探索的问题(以黑马点评为辅助讲解,大家主要体会实现逻辑)
`
缓存(Cache),就是数据交换的缓冲区,俗称的缓存就是缓冲区内的数据,一般从数据库中获取,存储于本地代码。
例1:Static final ConcurrentHashMap<K,V> map = new ConcurrentHashMap<>(); 本地用于高并发
例2:static final Cache<K,V> USER_CACHE = CacheBuilder.newBuilder().build(); 用于redis等缓存
例3:Static final Map<K,V> map = new HashMap(); 本地缓存
由于其被Static修饰,所以随着类的加载而被加载到内存之中,作为本地缓存,由于其又被final修饰,所以其引用(例3:map)和对象(例3:new HashMap())之间的关系是固定的,不能改变,因此不用担心赋值(=)会导致缓存失效;
速度快、好用
- 在一个项目中,存在一些很久不会变化的信息,如果每次访问都去数据库中读取,显然每次都要重复的动作是费时而毫无意义的。
- 案例: 在美团等应用上的商家店铺信息,比如照片,店铺名称,店铺位置等等几乎不经常变化的信息,我们每一次访问都去数据库中获取,会导致响应慢,而且还有高并发访问量给数据库带来巨大压力,所以我们就可以将这些放入redis中,下次响应直接去redis中获取,redis的性能能够大大改善这种问题。
核心思路就是客户端先向Redis中获取,如果Redis中没有,再去数据库中获取,数据库中获取后,将获取的数据写入缓存,这样下一次访问就能在Redis中获取。如果数据库没有,那就是真的没有了,返回报错,比如该商铺不存在等等。
public Shop queryWithPassThrough(Long id){
String key = "cache:shop:" + id;
// 1.从redis查询商铺缓存
String shopJson = stringRedisTemplate.opsForValue().get(key);
// 2.判断是否存在
if (StrUtil.isNotBlank(shopJson)){
// 3.存在,直接返回
return JSONUtil.toBean(shopJson, Shop.class);
}
// 判断命中的是否是空值
if (shopJson != null) {
// 返回一个错误信息
return null;
}
// 4.不存在,根据id查询数据库
Shop shop = getById(id);
// 5.不存在,返回错误
if (shop == null) {
return Result.fail("店铺不存在!");
}
// 6.存在,写入redis
stringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop));
// 7.返回
return shop;
}
第一次获取时Redi没有,去数据库中获取,这时候的数据肯定是准确的(排除一些数据库脏读幻读等等情况),但是这些存入Redis中的数据虽然是不经常发生改变的,但是肯定会存在改变的情况,当数据库信息改变的时候,你再去访问,还是先获取Redis中的,所以就会导致缓存更新的问题,数据库和缓存不一致的问题。
解决方案(三种常用的读写策略):
- 第一种方案常用,适合请求比较多的场景,这里综合考虑我们也使用该方案。
- 但是作为调用者处理上面对着三个问题:
- 删除缓存还是更新缓存
- 更新缓存:每次更新数据库都更新缓存,无效写操作较多
- 删除缓存:更新数据库时让缓存失效,查询时再更新缓存
- 如何保证缓存与数据库的操作同时成功或失败
- 单体系统,将缓存与数据库操作放在一个事务
- 分布式系统,利用TCC等分布式事务方案
- 先操作缓存还是先操作数据库
- 先删除缓存,再操作数据库:假设第一个线程先删除缓存,然后更新数据库,但是更新前有第二个线程来获取数据,它肯定先获取redis缓存,但是缓存已经被第一个线程删除,所以去数据库查询,然后将查询完的又写入redis缓存中。最后第一个线程再更新数据库,但是它更新数据库前第二个线程把原来的数据已经写入缓存了,又出现了不一致现象。
- 先操作数据库,再删除缓存:这种方案如果上诉场景也会出现不一致,但是第二次访问时就会一致,因为它操作完数据库后把缓存删了,所以删除缓存后,无论谁来访问肯定是要去访问数据库,然后再写入redis缓存中,实现了更新。
- 最终思路:
- 查询店铺时,如果缓存未命中,则查询数据库,将数据库结果写入缓存,并设置超时时间,设置超时时间后会实现定缓存失效,然后后面访问数据库实现再次查询数据库并写入缓存,并设置时间,形成一个良性循环。
- 修改店铺时,先修改数据库,再删除缓存。
public Shop queryWithPassThrough(Long id){
String key = CACHE_SHOP_KEY + id;
// 1.从redis查询商铺缓存
String shopJson = stringRedisTemplate.opsForValue().get(key);
// 2.判断是否存在
if (StrUtil.isNotBlank(shopJson)){
// 3.存在,直接返回
return JSONUtil.toBean(shopJson, Shop.class);
}
// 判断命中的是否是空值
if (shopJson != null) {
// 返回一个错误信息
return Result.fail("店铺不存在!");
}
// 4.不存在,根据id查询数据库
Shop shop = getById(id);
// 5.不存在,返回错误
if (shop == null) {
// 将空值写入redis
stringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL,TimeUnit.MINUTES);
return null;
}
// 6.存在,写入redis
stringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_SHOP_TTL, TimeUnit.MINUTES);
// 7.返回
return shop;
}
@Transactional
public Result update(Shop shop) {
Long id = shop.getId();
if (id == null) {
return Result.fail("店铺id不能为空");
}
// 1.更新数据库
updateById(shop);
// 2.删除缓存
stringRedisTemplate.delete(CACHE_SHOP_KEY + id);
return Result.ok();
}
缓存穿透 :缓存穿透是指客户端请求的数据在缓存中和数据库中都不存在,这样缓存永远不会生效,这些请求都会打到数据库。
- 常见两种解决方案:
- 缓存空对象
- 优点:实现简单,维护方便
- 缺点:1.额外的内存消耗;2.可能造成短期不一致
- 布隆过滤
- 优点:内存占用较少,没有多余key
- 缺点:1.实现复杂;2.存在误判可能
缓存空对象思路分析:当我们客户端访问不存在的数据时,先请求redis,但是此时redis中没有数据,此时会访问到数据库,但是数据库中也没有数据,这个数据穿透了缓存,直击数据库,我们都知道数据库能够承载的并发不如redis这么高,如果大量的请求同时过来访问这种不存在的数据,这些请求就都会访问到数据库,简单的解决方案就是哪怕这个数据在数据库中也不存在,我们也把这个数据存入到redis中去,这样,下次用户过来访问这个不存在的数据,那么在redis中也能找到这个数据就不会进入到缓存了。
布隆过滤:布隆过滤器其实采用的是哈希思想来解决这个问题,通过一个庞大的二进制数组,走哈希思想去判断当前这个要查询的这个数据是否存在,如果布隆过滤器判断存在,则放行,这个请求会去访问redis,哪怕此时redis中的数据过期了,但是数据库中一定存在这个数据,在数据库中查询出来这个数据后,再将其放入到redis中,假设布隆过滤器判断这个数据不存在,则直接返回。这种方式优点在于节约内存空间,存在误判,误判原因在于:布隆过滤器走的是哈希思想,只要哈希思想,就可能存在哈希冲突。
在原来的逻辑中,我们如果发现这个数据在mysql中不存在,直接就返回404了,这样是会存在缓存穿透问题的。大家可以想想如果有人恶意攻击你的网站,多个本来不存在的数据获取同时访问,因为缓存中没有,都会直达数据库。
现在的逻辑中:如果这个数据不存在,我们不会返回404 ,还是会把这个数据写入到Redis中,并且将value设置为空,再次发起查询时,我们如果发现命中之后,判断这个value是否是null,如果是null,则是之前写入的数据,证明是缓存穿透数据,如果不是,则直接返回数据。
public Shop queryWithPassThrough(Long id){
String key = "cache:shop:" + id;
// 1.从redis查询商铺缓存
String shopJson = stringRedisTemplate.opsForValue().get(key);
// 2.判断是否存在
if (StrUtil.isNotBlank(shopJson)){
// 3.存在,直接返回
return JSONUtil.toBean(shopJson, Shop.class);
}
// 判断命中的是否是空值
if (shopJson != null) {
// 返回一个错误信息
return null;
}
// 4.不存在,根据id查询数据库
Shop shop = getById(id);
// 5.不存在,返回错误
if (shop == null) {
// 将空值写入redis
stringRedisTemplate.opsForValue().set(key,"",30L,TimeUnit.MINUTES);
return null;
}
// 6.存在,写入redis
stringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_SHOP_TTL, TimeUnit.MINUTES);
// 7.返回
return shop;
}
缓存穿透的解决方案有哪些?
- 缓存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力。
- 解决方案:
- 给不同的Key的TTL添加随机值
- 利用Redis集群提高服务的可用性
- 给缓存业务添加降级限流策略
- 给业务添加多级缓存
- 缓存击穿问题也叫热点Key问题,就是一个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击。
- 常见的解决方案(两种):
- 互斥锁
- 逻辑过期锁
- 逻辑分析:假设线程1在查询缓存之后,本来应该去查询数据库,然后把这个数据重新加载到缓存的,此时只要线程1走完这个逻辑,其他线程就都能从缓存中加载这些数据了,但是假设在线程1没有走完的时候,后续的线程2,线程3,线程4同时过来访问当前这个方法, 那么这些线程都不能从缓存中查询到数据,那么他们就会同一时刻来访问查询缓存,都没查到,接着同一时间去访问数据库,同时的去执行数据库代码,对数据库访问压力过大。
因为锁能实现互斥性。假设线程过来,只能一个人一个人的来访问数据库,从而避免对于数据库访问压力过大,但这也会影响查询的性能,因为此时会让查询的性能从并行变成了串行,我们可以采用tryLock方法 + double check来解决这样的问题。
假设现在线程1过来访问,他查询缓存没有命中,但是此时他获得到了锁的资源,那么线程1就会一个人去执行逻辑,假设现在线程2过来,线程2在执行过程中,并没有获得到锁,那么线程2就可以进行到休眠,直到线程1把锁释放后,线程2获得到锁,然后再来执行逻辑,此时就能够从缓存中拿到数据了。
核心思路:利用redis的setnx方法来表示获取锁,该方法含义是redis中如果没有这个key,则插入成功,返回1,在stringRedisTemplate中返回true, 如果有这个key则插入失败,则返回0,在stringRedisTemplate返回false,我们可以通过true,或者是false,来表示是否有线程成功插入key,成功插入的key的线程我们认为他就是获得到锁的线程。
private boolean tryLock(String key) {
Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);
return BooleanUtil.isTrue(flag);
}
private void unlock(String key) {
stringRedisTemplate.delete(key);
}
public Shop queryWithMutex(Long id) {
String key = CACHE_SHOP_KEY + id;
// 1、从redis中查询商铺缓存
String shopJson = stringRedisTemplate.opsForValue().get("key");
// 2、判断是否存在
if (StrUtil.isNotBlank(shopJson)) {
// 存在,直接返回
return JSONUtil.toBean(shopJson, Shop.class);
}
//判断命中的值是否是空值
if (shopJson != null) {
//返回一个错误信息
return null;
}
// 4.实现缓存重构
//4.1 获取互斥锁
String lockKey = "lock:shop:" + id;
Shop shop = null;
try {
boolean isLock = tryLock(lockKey);
// 4.2 判断否获取成功
if(!isLock){
//4.3 失败,则休眠重试
Thread.sleep(50);
return queryWithMutex(id);
}
//4.4 成功,根据id查询数据库
shop = getById(id);
// 5.不存在,返回错误
if(shop == null){
//将空值写入redis
stringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL,TimeUnit.MINUTES);
//返回错误信息
return null;
}
//6.写入redis
stringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_NULL_TTL,TimeUnit.MINUTES);
}catch (Exception e){
throw new RuntimeException(e);
}
finally {
//7.释放互斥锁
unlock(lockKey);
}
return shop;
}
我们把过期时间设置在 redis的value中,注意:这个过期时间并不会直接作用于redis,而是我们后续通过逻辑去处理。假设线程1去查询缓存,然后从value中判断出来当前的数据已经过期了,此时线程1去获得互斥锁,那么其他线程会进行阻塞,获得了锁的线程他会开启一个 线程去进行 以前的重构数据的逻辑,直到新开的线程完成这个逻辑后,才释放锁, 而线程1直接进行返回,假设现在线程3过来访问,由于线程线程2持有着锁,所以线程3无法获得锁,线程3也直接返回数据,只有等到新开的线程2把重建数据构建完后,其他线程才能走返回正确的数据。
思路分析:当用户开始查询redis时,判断是否命中,如果没有命中则直接返回空数据,不查询数据库,而一旦命中后,将value取出,判断value中的过期时间是否满足,如果没有过期,则直接返回redis中的数据,如果过期,则在开启独立线程后直接返回之前的数据,独立线程去重构数据,重构完成后释放互斥锁。
因为现在redis中存储的数据的value需要带上过期时间,此时要么你去修改原来的实体类,要么你就是重新封装。
@Data
public class RedisData {
private LocalDateTime expireTime;// 过期时间
private Object data;// 存储的对象
}
private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);
public Shop queryWithLogicalExpire( Long id ) {
String key = CACHE_SHOP_KEY + id;
// 1.从redis查询商铺缓存
String json = stringRedisTemplate.opsForValue().get(key);
// 2.判断是否存在
if (StrUtil.isBlank(json)) {
// 3.存在,直接返回
return null;
}
// 4.命中,需要先把json反序列化为对象
RedisData redisData = JSONUtil.toBean(json, RedisData.class);
Shop shop = JSONUtil.toBean((JSONObject) redisData.getData(), Shop.class);
LocalDateTime expireTime = redisData.getExpireTime();
// 5.判断是否过期
if(expireTime.isAfter(LocalDateTime.now())) {
// 5.1.未过期,直接返回店铺信息
return shop;
}
// 5.2.已过期,需要缓存重建
// 6.缓存重建
// 6.1.获取互斥锁
String lockKey = LOCK_SHOP_KEY + id;
boolean isLock = tryLock(lockKey);
// 6.2.判断是否获取锁成功
if (isLock){
CACHE_REBUILD_EXECUTOR.submit( ()->{
try{
//重建缓存
this.saveShop2Redis(id,20L);
}catch (Exception e){
throw new RuntimeException(e);
}finally {
unlock(lockKey);
}
});
}
// 6.4.返回过期的商铺信息
return shop;
}
以上就是Redis缓存的详细讲解与实现。