目录
本文是参考了如下代码后对Transformer进行的尽量简洁实现,适合初学者把握模型核心要点
完整代码发布在github上,包含jupyter实现和.py实现,欢迎star: https://github.com/BoXiaolei/MyTransformer_pytorch
- import math
- import torch
- import numpy as np
- import torch.nn as nn
- import torch.optim as optim
- import torch.utils.data as Data
- # 姑且把导包也放在这个地方吧
-
-
-
- # S: 起始标记
- # E: 结束标记
- # P:意为padding,将当前序列补齐至最长序列长度的占位符
- sentence = [
- # enc_input dec_input dec_output
- ['ich mochte ein bier P','S i want a beer .', 'i want a beer . E'],
- ['ich mochte ein cola P','S i want a coke .', 'i want a coke . E'],
- ]
-
- # 词典,padding用0来表示
- # 源词典
- src_vocab = {'P':0, 'ich':1,'mochte':2,'ein':3,'bier':4,'cola':5}
- src_vocab_size = len(src_vocab) # 6
- # 目标词典(包含特殊符)
- tgt_vocab = {'P':0,'i':1,'want':2,'a':3,'beer':4,'coke':5,'S':6,'E':7,'.':8}
- # 反向映射词典,idx ——> word
- idx2word = {v:k for k,v in tgt_vocab.items()}
- tgt_vocab_size = len(tgt_vocab) # 9
-
- src_len = 5 # 输入序列enc_input的最长序列长度,其实就是最长的那句话的token数
- tgt_len = 6 # 输出序列dec_input/dec_output的最长序列长度
-
- # 构建模型输入的Tensor
- def make_data(sentence):
- enc_inputs, dec_inputs, dec_outputs = [],[],[]
- for i in range(len(sentence)):
- enc_input = [src_vocab[word] for word in sentence[i][0].split()]
- dec_input = [tgt_vocab[word] for word in sentence[i][1].split()]
- dec_output = [tgt_vocab[word] for word in sentence[i][2].split()]
-
- enc_inputs.append(enc_input)
- dec_inputs.append(dec_input)
- dec_outputs.append(dec_output)
-
- # LongTensor是专用于存储整型的,Tensor则可以存浮点、整数、bool等多种类型
- return torch.LongTensor(enc_inputs),torch.LongTensor(dec_inputs),torch.LongTensor(dec_outputs)
-
- enc_inputs, dec_inputs, dec_outputs = make_data(sentence)
-
- print(' enc_inputs: \n', enc_inputs) # enc_inputs: [2,5]
- print(' dec_inputs: \n', dec_inputs) # dec_inputs: [2,6]
- print(' dec_outputs: \n', dec_outputs) # dec_outputs: [2,6]
enc_inputs: tensor([[1, 2, 3, 4, 0], [1, 2, 3, 5, 0]]) dec_inputs: tensor([[6, 1, 2, 3, 4, 8], [6, 1, 2, 3, 5, 8]]) dec_outputs: tensor([[1, 2, 3, 4, 8, 7], [1, 2, 3, 5, 8, 7]])
- # 使用Dataset加载数据
- class MyDataSet(Data.Dataset):
- def __init__(self,enc_inputs, dec_inputs, dec_outputs):
- super(MyDataSet,self).__init__()
- self.enc_inputs = enc_inputs
- self.dec_inputs = dec_inputs
- self.dec_outputs = dec_outputs
-
- def __len__(self):
- # 我们前面的enc_inputs.shape = [2,5],所以这个返回的是2
- return self.enc_inputs.shape[0]
-
- # 根据idx返回的是一组 enc_input, dec_input, dec_output
- def __getitem__(self, idx):
- return self.enc_inputs[idx], self.dec_inputs[idx], self.dec_outputs[idx]
-
- # 构建DataLoader
- loader = Data.DataLoader(dataset=MyDataSet(enc_inputs,dec_inputs, dec_outputs),batch_size=2,shuffle=True)
- # 用来表示一个词的向量长度
- d_model = 512
-
- # FFN的隐藏层神经元个数
- d_ff = 2048
-
- # 分头后的q、k、v词向量长度,依照原文我们都设为64
- # 原文:queries and kes of dimention d_k,and values of dimension d_v .所以q和k的长度都用d_k来表示
- d_k = d_v = 64
-
- # Encoder Layer 和 Decoder Layer的个数
- n_layers = 6
-
- # 多头注意力中head的个数,原文:we employ h = 8 parallel attention layers, or heads
- n_heads = 8
Transformer包含Encoder和Decoder
Encoder和Decoder各自包含6个Layer
Encoder Layer中包含 Self Attention 和 FFN 两个Sub Layer
Decoder Layer中包含 Masked Self Attention、 Cross Attention、 FFN 三个Sub Layer
布局如图:
用于为输入的词向量进行位置编码
原文:The positional encodings have the same dimension d_model as the embeddings, so that the two can be summed
- class PositionalEncoding(nn.Module):
- def __init__(self, d_model, dropout=0.1, max_len=5000): # dropout是原文的0.1,max_len原文没找到
- '''max_len是假设的一个句子最多包含5000个token'''
- super(PositionalEncoding, self).__init__()
- self.dropout = nn.Dropout(p=dropout)
- # 开始位置编码部分,先生成一个max_len * d_model 的矩阵,即5000 * 512
- # 5000是一个句子中最多的token数,512是一个token用多长的向量来表示,5000*512这个矩阵用于表示一个句子的信息
- pe = torch.zeros(max_len, d_model)
- pos = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) # pos:[max_len,1],即[5000,1]
- # 先把括号内的分式求出来,pos是[5000,1],分母是[256],通过广播机制相乘后是[5000,256]
- div_term = pos / pow(10000.0,torch.arange(0, d_model, 2).float() / d_model)
- # 再取正余弦
- pe[:, 0::2] = torch.sin(div_term)
- pe[:, 1::2] = torch.cos(div_term)
- # 一个句子要做一次pe,一个batch中会有多个句子,所以增加一维用来和输入的一个batch的数据相加时做广播
- pe = pe.unsqueeze(0) # [5000,512] -> [1,5000,512]
- # 将pe作为固定参数保存到缓冲区,不会被更新
- self.register_buffer('pe', pe)
-
-
- def forward(self, x):
- '''x: [batch_size, seq_len, d_model]'''
- # 5000是我们预定义的最大的seq_len,就是说我们把最多的情况pe都算好了,用的时候用多少就取多少
- x = x + self.pe[:, :x.size(1), :]
- return self.dropout(x) # return: [batch_size, seq_len, d_model], 和输入的形状相同
- # 为enc_input和dec_input做一个mask,把占位符P的token(就是0) mask掉
- # 返回一个[batch_size, len_q, len_k]大小的布尔张量,True是需要mask掉的位置
- def get_attn_pad_mask(seq_q, seq_k):
- batch_size, len_q = seq_q.size()
- batch_size, len_k = seq_k.size()
- # seq_k.data.eq(0)返回一个等大的布尔张量,seq_k元素等于0的位置为True,否则为False
- # 然后扩维以保证后续操作的兼容(广播)
- pad_attn_mask = seq_k.data.eq(0).unsqueeze(1) # pad_attn_mask: [batch_size,1,len_k]
- # 要为每一个q提供一份k,所以把第二维度扩展了q次
- # 另注意expand并非真正加倍了内存,只是重复了引用,对任意引用的修改都会修改原始值
- # 这里是因为我们不会修改这个mask所以用它来节省内存
- return pad_attn_mask.expand(batch_size, len_q, len_k) # return: [batch_size, len_q, len_k]
- # 返回的是batch_size个 len_q * len_k的矩阵,内容是True和False,
- # 第i行第j列表示的是query的第i个词对key的第j个词的注意力是否无意义,若无意义则为True,有意义的为False(即被padding的位置是True)
此函数对应Transformer模型架构中Decoder的第一个注意力“Masked Multi-Head self Attention”中的Masked一词,作用是防止模型看到未来时刻的输入
- # 用于获取对后续位置的掩码,防止在预测过程中看到未来时刻的输入
- # 原文:to prevent positions from attending to subsequent positions
- def get_attn_subsequence_mask(seq):
- """seq: [batch_size, tgt_len]"""
- # batch_size个 tgt_len * tgt_len的mask矩阵
- attn_shape = [seq.size(0), seq.size(1), seq.size(1)]
- # np.triu 是生成一个 upper triangular matrix 上三角矩阵,k是相对于主对角线的偏移量
- # k=1意为不包含主对角线(从主对角线向上偏移1开始)
- subsequence_mask = np.triu(np.ones(attn_shape), k=1)
- subsequence_mask = torch.from_numpy(subsequence_mask).byte() # 因为只有0、1所以用byte节省内存
- return subsequence_mask # return: [batch_size, tgt_len, tgt_len]
因为这个mask只用于解码器中的第一个self attention,q和k都是自己(dec_input),所以是一个方阵
此函数用于计算缩放点积注意力,在MultiHeadAttention中被调用
- class ScaledDotProductionAttention(nn.Module):
- def __init__(self):
- super(ScaledDotProductionAttention, self).__init__()
-
- def forward(self, Q, K, V, attn_mask):
- '''
- Q: [batch_size, n_heads, len_q, d_k]
- K: [batch_size, n_heads, len_k, d_k]
- V: [batch_size, n_heads, len_v(=len_k), d_v] 全文两处用到注意力,一处是self attention,另一处是co attention,前者不必说,后者的k和v都是encoder的输出,所以k和v的形状总是相同的
- attn_mask: [batch_size, n_heads, seq_len, seq_len]
- '''
- # 1) 计算注意力分数QK^T/sqrt(d_k)
- scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k) # scores: [batch_size, n_heads, len_q, len_k]
- # 2) 进行 mask 和 softmax
- # mask为True的位置会被设为-1e9
- scores.masked_fill_(attn_mask, -1e9)
- attn = nn.Softmax(dim=-1)(scores) # attn: [batch_size, n_heads, len_q, len_k]
- # 3) 乘V得到最终的加权和
- context = torch.matmul(attn, V) # context: [batch_size, n_heads, len_q, d_v]
- '''
- 得出的context是每个维度(d_1-d_v)都考虑了在当前维度(这一列)当前token对所有token的注意力后更新的新的值,
- 换言之每个维度d是相互独立的,每个维度考虑自己的所有token的注意力,所以可以理解成1列扩展到多列
- 返回的context: [batch_size, n_heads, len_q, d_v]本质上还是batch_size个句子,
- 只不过每个句子中词向量维度512被分成了8个部分,分别由8个头各自看一部分,每个头算的是整个句子(一列)的512/8=64个维度,最后按列拼接起来
- '''
- return context # context: [batch_size, n_heads, len_q, d_v]
多头注意力的实现,Transformer的核心
- class MultiHeadAttention(nn.Module):
- def __init__(self):
- super(MultiHeadAttention, self).__init__()
- self.W_Q = nn.Linear(d_model, d_model)
- self.W_K = nn.Linear(d_model, d_model)
- self.W_V = nn.Linear(d_model, d_model)
- self.concat = nn.Linear(d_model, d_model)
-
- def forward(self, input_Q, input_K, input_V, attn_mask):
- '''
- input_Q: [batch_size, len_q, d_model] len_q是作为query的句子的长度,比如enc_inputs(2,5,512)作为输入,那句子长度5就是len_q
- input_K: [batch_size, len_k, d_model]
- input_K: [batch_size, len_v(len_k), d_model]
- attn_mask: [batch_size, seq_len, seq_len]
- '''
- residual, batch_size = input_Q, input_Q.size(0)
-
- # 1)linear projection [batch_size, seq_len, d_model] -> [batch_size, n_heads, seq_len, d_k/d_v]
- Q = self.W_Q(input_Q).view(batch_size, -1, n_heads, d_k).transpose(1, 2) # Q: [batch_size, n_heads, len_q, d_k]
- K = self.W_K(input_K).view(batch_size, -1, n_heads, d_k).transpose(1, 2) # K: [batch_size, n_heads, len_k, d_k]
- V = self.W_V(input_V).view(batch_size, -1, n_heads, d_v).transpose(1, 2) # V: [batch_size, n_heads, len_v(=len_k), d_v]
-
- # 2)计算注意力
- # 自我复制n_heads次,为每个头准备一份mask
- attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1) # attn_mask: [batch_size, n_heads, seq_len, seq_len]
- context = ScaledDotProductionAttention()(Q, K, V, attn_mask) # context: [batch_size, n_heads, len_q, d_v]
-
- # 3)concat部分
- context = torch.cat([context[:,i,:,:] for i in range(context.size(1))], dim=-1)
- output = self.concat(context) # [batch_size, len_q, d_model]
- return nn.LayerNorm(d_model).cuda()(output + residual) # output: [batch_size, len_q, d_model]
-
- '''
- 最后的concat部分,网上的大部分实现都采用的是下面这种方式(也是哈佛NLP团队的写法)
- context = context.transpose(1, 2).reshape(batch_size, -1, d_model)
- output = self.linear(context)
- 但是我认为这种方式拼回去会使原来的位置乱序,于是并未采用这种写法,两种写法最终的实验结果是相近的
- '''
这部分代码很简单,对应模型图中的 Feed Forward和 Add & Norm
- class PositionwiseFeedForward(nn.Module):
- def __init__(self):
- super(PositionwiseFeedForward, self).__init__()
- # 就是一个MLP
- self.fc = nn.Sequential(
- nn.Linear(d_model, d_ff),
- nn.ReLU(),
- nn.Linear(d_ff, d_model)
- )
-
- def forward(self, inputs):
- '''inputs: [batch_size, seq_len, d_model]'''
- residual = inputs
- output = self.fc(inputs)
- return nn.LayerNorm(d_model).cuda()(output + residual) # return: [batch_size, seq_len, d_model] 形状不变
包含一个MultiHeadAttention和一个FFN
- class EncoderLayer(nn.Module):
- def __init__(self):
- super(EncoderLayer, self).__init__()
- self.enc_self_attn = MultiHeadAttention()
- self.pos_ffn = PositionwiseFeedForward()
-
- def forward(self, enc_inputs, enc_self_attn_mask):
- '''
- enc_inputs: [batch_size, src_len, d_model]
- enc_self_attn_mask: [batch_size, src_len, src_len]
- '''
- # Q、K、V均为 enc_inputs
- enc_ouputs = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs, enc_self_attn_mask) # enc_ouputs: [batch_size, src_len, d_model]
- enc_ouputs = self.pos_ffn(enc_ouputs) # enc_outputs: [batch_size, src_len, d_model]
- return enc_ouputs # enc_outputs: [batch_size, src_len, d_model]
包含一个源序列词向量嵌入nn.Embedding、一个位置编码PositionalEncoding和6个Encoder Layer
- class Encoder(nn.Module):
- def __init__(self):
- super(Encoder, self).__init__()
- # 直接调的现成接口完成词向量的编码,输入是类别数和每一个类别要映射成的向量长度
- self.src_emb = nn.Embedding(src_vocab_size, d_model)
- self.pos_emb = PositionalEncoding(d_model)
- self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)])
-
- def forward(self, enc_inputs):
- '''enc_inputs: [batch_size, src_len]'''
- enc_outputs = self.src_emb(enc_inputs) # [batch_size, src_len] -> [batch_size, src_len, d_model]
- enc_outputs = self.pos_emb(enc_outputs) # enc_outputs: [batch_size, src_len, d_model]
- # Encoder中是self attention,所以传入的Q、K都是enc_inputs
- enc_self_attn_mask = get_attn_pad_mask(enc_inputs, enc_inputs) # enc_self_attn_mask: [batch_size, src_len, src_len]
- for layer in self.layers:
- enc_outputs = layer(enc_outputs, enc_self_attn_mask)
- return enc_outputs # enc_outputs: [batch_size, src_len, d_model]
包含两个MultiHeadAttention和一个FFN
- class DecoderLayer(nn.Module):
- def __init__(self):
- super(DecoderLayer, self).__init__()
- self.dec_self_attn = MultiHeadAttention()
- self.dec_enc_attn = MultiHeadAttention()
- self.pos_ffn = PositionwiseFeedForward()
-
- def forward(self, dec_inputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask):
- '''
- dec_inputs: [batch_size, tgt_len, d_model]
- enc_outputs: [batch_size, src_len, d_model]
- dec_self_attn_mask: [batch_size, tgt_len, tgt_len]
- dec_enc_attn_mask: [batch_size, tgt_len, src_len] 前者是Q后者是K
- '''
- dec_outputs = self.dec_self_attn(dec_inputs, dec_inputs, dec_inputs, dec_self_attn_mask)
- dec_outputs = self.dec_enc_attn(dec_outputs, enc_outputs, enc_outputs, dec_enc_attn_mask)
- dec_outputs = self.pos_ffn(dec_outputs)
-
- return dec_outputs # dec_outputs: [batch_size, tgt_len, d_model]
包含一个目标序列词向量序列嵌入nn.Embedding、一个位置编码PositionalEncoding还有6个Decoder Layer
- class Decoder(nn.Module):
- def __init__(self):
- super(Decoder, self).__init__()
- self.tgt_emb = nn.Embedding(tgt_vocab_size, d_model)
- self.pos_emb = PositionalEncoding(d_model)
- self.layers = nn.ModuleList([DecoderLayer() for _ in range(n_layers)])
-
-
- def forward(self, dec_inputs, enc_inputs, enc_outputs):
- '''
- 这三个参数对应的不是Q、K、V,dec_inputs是Q,enc_outputs是K和V,enc_inputs是用来计算padding mask的
- dec_inputs: [batch_size, tgt_len]
- enc_inpus: [batch_size, src_len]
- enc_outputs: [batch_size, src_len, d_model]
- '''
- dec_outputs = self.tgt_emb(dec_inputs)
- dec_outputs = self.pos_emb(dec_outputs).cuda()
- dec_self_attn_pad_mask = get_attn_pad_mask(dec_inputs, dec_inputs).cuda()
- dec_self_attn_subsequence_mask = get_attn_subsequence_mask(dec_inputs).cuda()
- # 将两个mask叠加,布尔值可以视为0和1,和大于0的位置是需要被mask掉的,赋为True,和为0的位置是有意义的为False
- dec_self_attn_mask = torch.gt((dec_self_attn_pad_mask +
- dec_self_attn_subsequence_mask), 0).cuda()
- # 这是co-attention部分,为啥传入的是enc_inputs而不是enc_outputs呢
- dec_enc_attn_mask = get_attn_pad_mask(dec_inputs, enc_inputs)
-
- for layer in self.layers:
- dec_outputs = layer(dec_outputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask)
-
- return dec_outputs # dec_outputs: [batch_size, tgt_len, d_model]
包含一个Encoder、一个Decoder、一个nn.Linear
- class Transformer(nn.Module):
- def __init__(self):
- super(Transformer, self).__init__()
- self.encoder = Encoder().cuda()
- self.decoder = Decoder().cuda()
- self.projection = nn.Linear(d_model, tgt_vocab_size).cuda()
-
- def forward(self, enc_inputs, dec_inputs):
- '''
- enc_inputs: [batch_size, src_len]
- dec_inputs: [batch_size, tgt_len]
- '''
- enc_outputs = self.encoder(enc_inputs)
- dec_outputs = self.decoder(dec_inputs, enc_inputs, enc_outputs)
- dec_logits = self.projection(dec_outputs) # dec_logits: [batch_size, tgt_len, tgt_vocab_size]
-
- # 解散batch,一个batch中有batch_size个句子,每个句子有tgt_len个词(即tgt_len行),
- # 现在让他们按行依次排布,如前tgt_len行是第一个句子的每个词的预测概率,
- # 再往下tgt_len行是第二个句子的,一直到batch_size * tgt_len行
- return dec_logits.view(-1, dec_logits.size(-1)) # [batch_size * tgt_len, tgt_vocab_size]
- '''最后变形的原因是:nn.CrossEntropyLoss接收的输入的第二个维度必须是类别'''
- model = Transformer().cuda()
- model.train()
- # 损失函数,忽略为0的类别不对其计算loss(因为是padding无意义)
- criterion = nn.CrossEntropyLoss(ignore_index=0)
- optimizer = optim.SGD(model.parameters(), lr=1e-3, momentum=0.99)
-
- # 训练开始
- for epoch in range(1000):
- for enc_inputs, dec_inputs, dec_outputs in loader:
- '''
- enc_inputs: [batch_size, src_len] [2,5]
- dec_inputs: [batch_size, tgt_len] [2,6]
- dec_outputs: [batch_size, tgt_len] [2,6]
- '''
- enc_inputs, dec_inputs, dec_outputs = enc_inputs.cuda(), dec_inputs.cuda(), dec_outputs.cuda()
- outputs = model(enc_inputs, dec_inputs) # outputs: [batch_size * tgt_len, tgt_vocab_size]
- # outputs: [batch_size * tgt_len, tgt_vocab_size], dec_outputs: [batch_size, tgt_len]
- loss = criterion(outputs, dec_outputs.view(-1)) # 将dec_outputs展平成一维张量
-
- # 更新权重
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
-
- print(f'Epoch [{epoch + 1}/1000], Loss: {loss.item()}')
-
- torch.save(model, 'MyTransformer.pth')
训练1000个epoch的输出:
Epoch [1/1000], Loss: 2.1738522052764893 Epoch [2/1000], Loss: 2.0738959312438965 Epoch [3/1000], Loss: 1.9049569368362427 Epoch [4/1000], Loss: 1.5952812433242798 Epoch [5/1000], Loss: 1.3922237157821655 Epoch [6/1000], Loss: 1.2176579236984253 Epoch [7/1000], Loss: 0.9465160965919495 Epoch [8/1000], Loss: 0.7412980198860168 Epoch [9/1000], Loss: 0.5801363587379456 Epoch [10/1000], Loss: 0.3842979967594147 ...... Epoch [990/1000], Loss: 3.3477856504759984e-06 Epoch [991/1000], Loss: 3.576270273697446e-06 Epoch [992/1000], Loss: 3.675609832498594e-06 Epoch [993/1000], Loss: 5.632609827443957e-06 Epoch [994/1000], Loss: 4.202114723739214e-06 Epoch [995/1000], Loss: 3.91402772947913e-06 Epoch [996/1000], Loss: 3.566336090443656e-06 Epoch [997/1000], Loss: 3.2285781799146207e-06 Epoch [998/1000], Loss: 4.897496637568111e-06 Epoch [999/1000], Loss: 3.894158908224199e-06 Epoch [1000/1000], Loss: 3.665677240860532e-06
- # 原文使用的是大小为4的beam search,这里为简单起见使用更简单的greedy贪心策略生成预测,不考虑候选,每一步选择概率最大的作为输出
- # 如果不使用greedy_decoder,那么我们之前实现的model只会进行一次预测得到['i'],并不会自回归,所以我们利用编写好的Encoder-Decoder来手动实现自回归(把上一次Decoder的输出作为下一次的输入,直到预测出终止符)
- def greedy_decoder(model, enc_input, start_symbol):
- """enc_input: [1, seq_len] 对应一句话"""
- enc_outputs = model.encoder(enc_input) # enc_outputs: [1, seq_len, 512]
- # 生成一个1行0列的,和enc_inputs.data类型相同的空张量,待后续填充
- dec_input = torch.zeros(1, 0).type_as(enc_input.data) # .data避免影响梯度信息
- next_symbol = start_symbol
- flag = True
- while flag:
- # dec_input.detach() 创建 dec_input 的一个分离副本
- # 生成了一个 只含有next_symbol的(1,1)的张量
- # -1 表示在最后一个维度上进行拼接cat
- # 这行代码的作用是将next_symbol拼接到dec_input中,作为新一轮decoder的输入
- dec_input = torch.cat([dec_input.detach(), torch.tensor([[next_symbol]], dtype=enc_input.dtype).cuda()], -1) # dec_input: [1,当前词数]
- dec_outputs = model.decoder(dec_input, enc_input, enc_outputs) # dec_outputs: [1, tgt_len, d_model]
- projected = model.projection(dec_outputs) # projected: [1, 当前生成的tgt_len, tgt_vocab_size]
- # max返回的是一个元组(最大值,最大值对应的索引),所以用[1]取到最大值对应的索引, 索引就是类别,即预测出的下一个词
- # keepdim为False会导致减少一维
- prob = projected.squeeze(0).max(dim=-1, keepdim=False)[1] # prob: [1],
- # prob是一个一维的列表,包含目前为止依次生成的词的索引,最后一个是新生成的(即下一个词的类别)
- # 因为注意力是依照前面的词算出来的,所以后生成的不会改变之前生成的
- next_symbol = prob.data[-1]
- if next_symbol == tgt_vocab['.']:
- flag = False
- print(next_symbol)
- return dec_input # dec_input: [1,tgt_len]
-
-
- # 测试
- model = torch.load('MyTransformer.pth')
- model.eval()
- with torch.no_grad():
- # 手动从loader中取一个batch的数据
- enc_inputs, _, _ = next(iter(loader))
- enc_inputs = enc_inputs.cuda()
- for i in range(len(enc_inputs)):
- greedy_dec_input = greedy_decoder(model, enc_inputs[i].view(1, -1), start_symbol=tgt_vocab['S'])
- predict = model(enc_inputs[i].view(1, -1), greedy_dec_input) # predict: [batch_size * tgt_len, tgt_vocab_size]
- predict = predict.data.max(dim=-1, keepdim=False)[1]
- '''greedy_dec_input是基于贪婪策略生成的,而贪婪解码的输出是基于当前时间步生成的假设的输出。这意味着它可能不是最优的输出,因为它仅考虑了每个时间步的最有可能的单词,而没有考虑全局上下文。
- 因此,为了获得更好的性能评估,通常会将整个输入序列和之前的假设输出序列传递给模型,以考虑全局上下文并允许模型更准确地生成输出
- '''
- print(enc_inputs[i], '->', [idx2word[n.item()] for n in predict])
tensor(1, device='cuda:0') tensor(2, device='cuda:0') tensor(3, device='cuda:0') tensor(5, device='cuda:0') tensor(8, device='cuda:0') tensor([1, 2, 3, 5, 0], device='cuda:0') -> ['i', 'want', 'a', 'coke', '.'] tensor(1, device='cuda:0') tensor(2, device='cuda:0') tensor(3, device='cuda:0') tensor(4, device='cuda:0') tensor(8, device='cuda:0') tensor([1, 2, 3, 4, 0], device='cuda:0') -> ['i', 'want', 'a', 'beer', '.']
- # 探究一下多头注意力从(batch_size, seq_len, d_model) 到 (batch_size,n_heads, seq_len, d_k/v)的意义
-
- # 1、这是初始的q
- q = torch.arange(120).reshape(2,5,12)
- print(q)
- print('------------------')
- batch_size = 2
- seq_len = 5
- d_model = 12
- n_heads = 3
- d_k = 4
-
- # 2、分成n_heads个头
- new_q = q.view(batch_size, -1, n_heads, d_k).transpose(1,2)
- # 上面一行代码的形状变化:(2,5,12) -> (2,5,3,4) -> (2,3,5,4)
- # 意义变化:最初是batch_size为2,一个batch中有2个句子,一个句子包含5个词,每个词由长度为12的向量表示
- # 最后仍然是batch_size为2,但一个batch中有3个头,每个头包含一个句子,每个句子包含5个词,但每个词由长度为4的向量表示
-
- print(new_q)
- print(new_q.shape) # torch.Size([2, 3, 5, 4])
- print('------------------')
-
- # 3、将n_heads个头合并
- final_q = q.transpose(1,2).contiguous().view(batch_size, -1, d_model)
- print(final_q)
- print(final_q.shape)
- print('------------------')
-
- # 按原来的concat实现拼回去元素顺序和最初不同了,因此改成下面这种实现
- final_q2 = torch.cat([new_q[:,i,:,:] for i in range(new_q.size(1))], dim=-1)
- print(final_q2)
- print(final_q2.shape)
tensor([[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [ 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23], [ 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35], [ 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47], [ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59]], [[ 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71], [ 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83], [ 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], [ 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107], [108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119]]]) ------------------ tensor([[[[ 0, 1, 2, 3], [ 12, 13, 14, 15], [ 24, 25, 26, 27], [ 36, 37, 38, 39], [ 48, 49, 50, 51]], [[ 4, 5, 6, 7], [ 16, 17, 18, 19], [ 28, 29, 30, 31], [ 40, 41, 42, 43], [ 52, 53, 54, 55]], [[ 8, 9, 10, 11], [ 20, 21, 22, 23], [ 32, 33, 34, 35], [ 44, 45, 46, 47], [ 56, 57, 58, 59]]], [[[ 60, 61, 62, 63], [ 72, 73, 74, 75], [ 84, 85, 86, 87], [ 96, 97, 98, 99], [108, 109, 110, 111]], [[ 64, 65, 66, 67], [ 76, 77, 78, 79], [ 88, 89, 90, 91], [100, 101, 102, 103], [112, 113, 114, 115]], [[ 68, 69, 70, 71], [ 80, 81, 82, 83], [ 92, 93, 94, 95], [104, 105, 106, 107], [116, 117, 118, 119]]]]) torch.Size([2, 3, 5, 4]) ------------------ tensor([[[ 0, 12, 24, 36, 48, 1, 13, 25, 37, 49, 2, 14], [ 26, 38, 50, 3, 15, 27, 39, 51, 4, 16, 28, 40], [ 52, 5, 17, 29, 41, 53, 6, 18, 30, 42, 54, 7], [ 19, 31, 43, 55, 8, 20, 32, 44, 56, 9, 21, 33], [ 45, 57, 10, 22, 34, 46, 58, 11, 23, 35, 47, 59]], [[ 60, 72, 84, 96, 108, 61, 73, 85, 97, 109, 62, 74], [ 86, 98, 110, 63, 75, 87, 99, 111, 64, 76, 88, 100], [112, 65, 77, 89, 101, 113, 66, 78, 90, 102, 114, 67], [ 79, 91, 103, 115, 68, 80, 92, 104, 116, 69, 81, 93], [105, 117, 70, 82, 94, 106, 118, 71, 83, 95, 107, 119]]]) torch.Size([2, 5, 12]) ------------------ tensor([[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [ 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23], [ 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35], [ 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47], [ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59]], [[ 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71], [ 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83], [ 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], [ 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107], [108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119]]]) torch.Size([2, 5, 12])
以上就是全部内容了,感谢阅读