• 神经网络气温预测


    #引用所需要的库
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import torch
    import torch.optim as optim#优化器
    #过滤警告
    import warnings
    warnings.filterwarnings(“ignore”)
    %matplotlib inline

    features=pd.read_csv(‘temps.csv’)
    features.head()

    year 	month 	day 	week 	temp_2 	temp_1 	average 	actual 	friend
    
    • 1

    0 2016 1 1 Fri 45 45 45.6 45 29
    1 2016 1 2 Sat 44 45 45.7 44 61
    2 2016 1 3 Sun 45 44 45.8 41 56
    3 2016 1 4 Mon 44 41 45.9 40 53
    4 2016 1 5 Tues 41 40 46.0 44 41

    #把列转为时间处理数据
    import datetime
    years=features[‘year’]
    months=features[‘month’]
    days=features[‘day’]
    #datetime格式
    dates=[str(int (year))+‘-’+str(int(month))+‘-’+str(int(day)) for year,month,day in zip(years,months,days)]
    dates=[datetime.datetime.strptime(date,‘%Y-%m-%d’)for date in dates]

    features.shape

    (348, 9)

    dates[:5]

    [datetime.datetime(2016, 1, 1, 0, 0),
    datetime.datetime(2016, 1, 2, 0, 0),
    datetime.datetime(2016, 1, 3, 0, 0),
    datetime.datetime(2016, 1, 4, 0, 0),
    datetime.datetime(2016, 1, 5, 0, 0)]

    #小展示,看看数据集长什么样

    #独热编码
    features=pd.get_dummies(features)
    features.head(5)

    year 	month 	day 	temp_2 	temp_1 	average 	actual 	friend 	week_Fri 	week_Mon 	week_Sat 	week_Sun 	week_Thurs 	week_Tues 	week_Wed
    
    • 1

    0 2016 1 1 45 45 45.6 45 29 1 0 0 0 0 0 0
    1 2016 1 2 44 45 45.7 44 61 0 0 1 0 0 0 0
    2 2016 1 3 45 44 45.8 41 56 0 0 0 1 0 0 0
    3 2016 1 4 44 41 45.9 40 53 0 1 0 0 0 0 0
    4 2016 1 5 41 40 46.0 44 41 0 0 0 0 0 1 0

    features.shape

    (348, 15)

    #标签(Y)
    labels=np.array(features[‘actual’])
    #在特征集中剔除标签,剩下x
    features=features.drop(‘actual’,axis=1)
    #单独保存名字,以备后患
    feature_list=list(features.columns)
    #转成数组格式->后续还需要转换成tensor张量
    features=np.array(features)

    features.shape

    (348, 14)

    #因为数据有大有小,归一化(数值浮动范围小)
    from sklearn import preprocessing
    input_features=preprocessing.StandardScaler().fit_transform(features)

    #构建网络模型(复杂版)
    #转为tensor
    x = torch.tensor(input_features, dtype = float)
    y = torch.tensor(labels, dtype = float)
    #权重参数初始化
    weights = torch.randn((14,128),dtype=float,requires_grad=True)
    biases = torch.randn(128,dtype=float,requires_grad=True)
    weights2 = torch.randn((128,1),dtype=float,requires_grad=True)
    biases2 = torch.randn(1,dtype=float,requires_grad=True)

    learning_rate = 0.001
    losses = []

    for i in range(1000):
    #计算隐藏层
    hidden = x.mm(weights)+biases
    #给激活函数
    hidden = torch.relu(hidden)
    #预测
    predictions = hidden.mm(weights2)+biases2
    #计算损失
    loss = torch.mean((predictions - y) ** 2)
    losses.append(loss.data.numpy())

    if i % 100 == 0 :
        print('loss:',loss)
    # 反向传播计算  
    loss.backward()
    
    #更新参数
    weights.data.add_(- learning_rate * weights.grad.data)
    biases.data.add_(- learning_rate * biases.grad.data)
    weights2.data.add_(- learning_rate * weights2.grad.data)
    biases2.data.add_(- learning_rate * biases2.grad.data)
    #记得清空权重参数,因为每次迭代会累计
    weights.grad.data.zero_()
    biases.grad.data.zero_()
    weights2.grad.data.zero_()
    biases2.grad.data.zero_()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15

    loss: tensor(8652.8872, dtype=torch.float64, grad_fn=)
    loss: tensor(155.4351, dtype=torch.float64, grad_fn=)
    loss: tensor(147.5643, dtype=torch.float64, grad_fn=)
    loss: tensor(144.6621, dtype=torch.float64, grad_fn=)
    loss: tensor(143.1741, dtype=torch.float64, grad_fn=)
    loss: tensor(142.2740, dtype=torch.float64, grad_fn=)
    loss: tensor(141.6748, dtype=torch.float64, grad_fn=)
    loss: tensor(141.2530, dtype=torch.float64, grad_fn=)
    loss: tensor(140.9336, dtype=torch.float64, grad_fn=)
    loss: tensor(140.6799, dtype=torch.float64, grad_fn=)

    简化实现

    指定规模

    input_size = input_features.shape[1]
    hidden_size = 128
    output_size = 1
    batch_size = 16

    搭建网络

    my_nn = torch.nn.Sequential(
    torch.nn.Linear(input_size,hidden_size),
    torch.nn.Sigmoid(),
    torch.nn.Linear(hidden_size,output_size),
    )

    定义损失函数

    cost = torch.nn.MSELoss(reduction = ‘mean’)
    optimizer = torch.optim.Adam(my_nn.parameters(),lr = 0.001)

    训练网络

    losses = []
    for i in range(1000):
    batch_loss = []
    # 小批量随机梯度下降进行训练
    for start in range(0,len(input_features),batch_size):
    end = start+batch_size if start + batch_size < len(input_features) else len(input_features)
    xx = torch.tensor(input_features[start:end],dtype = torch.float,requires_grad = True)
    yy = torch.tensor(labels[start:end],dtype = torch.float,requires_grad = True)
    prediction = my_nn(xx)
    loss = cost(prediction,yy)
    optimizer.zero_grad()
    loss.backward(retain_graph=True)
    optimizer.step()
    batch_loss.append(loss.data.numpy())

    # 打印损失
    # 打印损失值
    if i % 100 == 0:
        losses.append(np.mean(batch_loss))
        print(i,np.mean(batch_loss))
    
    • 1
    • 2
    • 3
    • 4
    • 5

    0 4015.5623
    100 38.040577
    200 35.64831
    300 35.261333
    400 35.099106
    500 34.968235
    600 34.84836
    700 34.728233
    800 34.605637
    900 34.48074

    #评估模型
    x = torch.tensor(input_features,dtype = torch.float)
    predict = my_nn(x).data.numpy()

    转换日期格式

    dates = [str(int(year))+‘-’+str(int(month))+‘-’+str(int(day)) for year,month,day in zip(years,months,days)]
    dates = [datetime.datetime.strptime(date,‘%Y-%m-%d’) for date in dates]

    创建一个表格来存日期和其对应的标签数值

    true_data = pd.DataFrame(data = {‘date’:dates,‘actual’:labels})

    同理,在创建一个来存日期和其对应的模型预测值

    mouths = features[:,feature_list.index(‘month’)]
    days = features[:,feature_list.index(‘day’)]
    years = features[:,feature_list.index(‘year’)]

    test_dates = [str(int(year))+‘-’+str(int(month))+‘-’+str(int(day)) for year,month,day in zip(years,months,days)]
    test_dates = [datetime.datetime.strptime(date,‘%Y-%m-%d’) for date in test_dates]

    predictions_data = pd.DataFrame(data = {‘date’:test_dates,‘prediction’:predict.reshape(-1)})

    真实值

    plt.plot(true_data[‘date’],true_data[‘actual’],‘b-’,label = ‘actual’)

    预测值

    plt.plot(predictions_data[‘date’],predictions_data[‘prediction’],‘ro’,label = ‘prediction’)
    plt.xticks(rotation = ‘60’)
    plt.legend()

    图名

    plt.xlabel(‘Date’);plt.ylabel(‘Maximum Temperature (F)’);plt.title(‘Actual and Predicted Values’)

    plt.show()
    ValueError: rotation must be ‘vertical’, ‘horizontal’ or a number, not 60

  • 相关阅读:
    在ffmpeg中,网络视频流h264为什么默认的转为YUV而不是其他格式
    SpringBoot的原理-初探
    leetcode——最长回文子串——百日算法成就第五天5%
    web网页设计期末课程大作业 基于HTML+CSS仿苹果商城电商项目的设计与实现
    DAMO-YOLO训练自己的数据集,使用onnxruntime推理部署
    什么是设计模式?优漫动游
    react:handleEdit={() => handleEdit(user)} 和 handleEdit={handleEdit(user)}有啥区别
    基于STM32F103ZET6库函数按键输入实验
    数据仓库概念梳理
    R语言探索 BRFSS 数据和预测
  • 原文地址:https://blog.csdn.net/Che_Che_/article/details/134159983