• 【学习笔记】CF1784F Minimums or Medians


    首先让 n n n乘上 2 2 2

    考虑枚举最终被删除的位置有哪些。 a i = 0 a_i=0 ai=0表示这个位置被删除, a i = 1 a_i=1 ai=1表示这个位置被保留,设满足 a i = 0 a_i=0 ai=0的前缀长度为 l l l l l l是偶数), p r e i pre_i prei表示 a i a_i ai的前缀和,则从左往右对于每个极长的被删除的连续段 [ l , r ] [l,r] [l,r],其能够被删除的充要条件是:

    • r − l + 1 r-l+1 rl+1是偶数
    • p r e r ≤ n − r ≤ p r e r + c n t pre_r\le n-r\le pre_r+cnt prernrprer+cnt

    注意到式子满足单调性,因此我们只用判断除了前缀外的第一个连续段是否满足上界,以及最后一个连续段是否满足下界。

    对于最后一个连续段,注意到 p r e r + n − r = n − 2 K pre_r+n-r=n-2K prer+nr=n2K,因此可以等价变形成 n − r ≥ n 2 − K n-r\ge \frac{n}{2}-K nr2nK,即 r ≤ n 2 + K r\le \frac{n}{2}+K r2n+K。这其实从另一个角度更好理解:第 i i i次操作删除的数不会超过 n 2 + i \frac{n}{2}+i 2n+i(见Alex_Wei的题解)。因此,对于 n 2 + K \frac{n}{2}+K 2n+K之后的数一定都是保留的,不会影响答案。

    对于第一个连续段,发现 p r e r + c n t = l − 1 pre_r+cnt=l-1 prer+cnt=l1,因此枚举 l l l,得到 r ≥ n − l + 1 r\ge n-l+1 rnl+1,因此 [ l , n − l + 1 ] [l,n-l+1] [l,nl+1]全部被删除,而 [ n − l + 2 , n 2 + K ] [n-l+2,\frac{n}{2}+K] [nl+2,2n+K]只需满足连续段长度为偶数即可。

    最后,我们注意到从 n n n个数中选 2 k 2k 2k个数,使得每一段为偶数的方案数为 ( n − k k ) \binom{n-k}{k} (knk)(先将 2 k 2k 2k个数中相邻的两两配对,问题等价于 n − 2 k n-2k n2k个球放入 k + 1 k+1 k+1个可为空的盒子),因此枚举 c n t , l cnt,l cnt,l后计算组合数:

    • l ≤ n 2 l\le \frac{n}{2} l2n,则:

    ∑ c n t ≤ K ∑ max ⁡ ( 2 c n t + 2 , n 2 − K + 1 ) ≤ l ≤ n 2 f ( K + l − n 2 − 1 , K − c n t − n 2 + l − 1 ) \sum_{cnt\le K}\sum_{\max(2cnt+2,\frac{n}{2}-K+1)\le l\le \frac{n}{2}}f(K+l-\frac{n}{2}-1,K-cnt-\frac{n}{2}+l-1) cntKmax(2cnt+2,2nK+1)l2nf(K+l2n1,Kcnt2n+l1)

    其中 f ( n , m ) = ( n − m m ) f(n,m)=\binom{n-m}{m} f(n,m)=(mnm)

    • l > n 2 l>\frac{n}{2} l>2n,则:

    ∑ c n t ≤ K f ( n 2 + K − max ⁡ ( 2 c n t + 1 , n 2 ) , K − c n t ) \sum_{cnt\le K}f(\frac{n}{2}+K-\max(2cnt+1,\frac{n}{2}),K-cnt) cntKf(2n+Kmax(2cnt+1,2n),Kcnt)

    对于第二部分,可以 O ( n ) O(n) O(n)计算;对于第一部分,利用 ( i j ) = ( i − 1 j ) + ( i − 1 j − 1 ) \binom{i}{j}=\binom{i-1}{j}+\binom{i-1}{j-1} (ji)=(ji1)+(j1i1)可以转化为求上指标减少 1 1 1时的答案,而下指标的指针移动是 O ( 1 ) O(1) O(1)的,因此总复杂度 O ( n ) O(n) O(n)

    #include
    #define ll long long
    #define pb push_back
    #define fi first
    #define se second
    #define db double
    #define inf 0x3f3f3f3f
    using namespace std;
    const int mod=998244353;
    const int N=2e6+5;
    ll fac[N],res,sm,ifac[N];
    int n,K;
    ll fpow(ll x,ll y=mod-2){
        ll z(1);
        for(;y;y>>=1){
            if(y&1)z=z*x%mod;
            x=x*x%mod;
        }return z;
    }
    void init(int n){
        fac[0]=1;for(int i=1;i<=n;i++)fac[i]=fac[i-1]*i%mod;
        ifac[n]=fpow(fac[n]);for(int i=n;i>=1;i--)ifac[i-1]=ifac[i]*i%mod;
    }
    ll binom(int x,int y){
        if(x<0||y<0||x<y)return 0;
        return fac[x]*ifac[y]%mod*ifac[x-y]%mod;
    }
    void add(ll &x,ll y){
        x=(x+y)%mod;
    }
    ll f(int n,int m){
        if(n<0||m<0||n<2*m)return 0;
        return binom(n-m,m);
    }
    int l,r;
    int main(){
        ios::sync_with_stdio(false);
        cin.tie(0),cout.tie(0);
        cin>>n>>K,n<<=1,init(n);
        if(K==0||n/2==K){
            cout<<1;
            return 0;
        }
        l=0,r=K-1,res=1,sm=1;
        for(int i=1;i<=K;i++){
            int nl=K-i-n/2+max(2*i+2,n/2-K+1)-1,nr=K-i-1;
            if(nl<=nr){
                while(l>nl)add(sm,binom(i-1,--l));
                while(r<nr)add(sm,binom(i-1,++r));
                while(l<nl)add(sm,-binom(i-1,l++));
                while(r>nr)add(sm,-binom(i-1,r--));
                add(sm,sm),add(sm,binom(i-1,nl-1)),add(sm,-binom(i-1,nr));
                add(res,sm);
            }
            add(res,f(n/2+K-max(2*i+1,n/2),K-i));
        }cout<<(res+mod)%mod;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
  • 相关阅读:
    Go HTTP 调用(下)
    后门程序3(补充)
    C#基于inpoutx64读写ECRAM硬件信息
    并网逆变器+VSG控制+预同步控制+电流电流双环控制(Simulink仿真实现)
    [论文笔记]Poly-encoder
    .Net 对象生命周期由浅入深2(GC)
    【MyBatis笔记05】MyBatis中常见的几种查询结果类型介绍
    C++标注模板库(STL)-deque介绍
    Elasticsearch学习系列四(聚合搜索)
    OpenCV-Python快速入门(二):图像基础
  • 原文地址:https://blog.csdn.net/cqbzlydd/article/details/134019643