• Elasticsearch学习系列四(聚合搜索)


    聚合分析

    聚合分析是数据库中重要的功能特性,完成对一个查询的集中数据的聚合计算。如:最大值、最小值、求和、平均值等等。对一个数据集求和,算最大最小值等等,在ES中称为指标聚合,而对数据做类似关系型数据库那样的分组(group by),在ES中称为分桶。

    语法:

    aggregations" : {
      "<aggregation_name>" : { <!--聚合的名字 -->
        "<aggregation_type>" : { <!--聚合的类型 -->
           <aggregation_body> <!--聚合体:对哪些字段进行聚合 -->
        }
        [,"meta" : { [<meta_data_body>] } ]? <!--元 -->
        [,"aggregations" : { [<sub_aggregation>]+ } ]? <!--在聚合里面在定义子聚合 -->
    
     }
     [,"<aggregation_name_2>" : { ... } ]*<!--聚合的名字 -->
    }
    

    aggregations可以简写为aggs。

    指标聚合

    示例1:查询所有商品里最贵的价格

    size就填0就行。

    POST /item/_search
    {
      "size":0,
      "aggs": {
        "max_price": {
          "max": {
            "field": "price"
          }
        }
      }
    }
    

    示例2:文档计数

    POST /item/_count
    {
      "query": {
        "range": {
          "price": {
            "gte": 10,
            "lte": 5000
          }
        }
      }
    }
    

    示例3:统计某字段有值的文档数

    POST /item/_search?size=0
    {
      "aggs": {
        "price_count": {
          "value_count": {
            "field": "price"
          }
        }
      }
    }
    
    

    示例4:用cardinality值去重计数

    如果有price重复的,就只会统计去重后的数量

    POST /item/_search?size=0
    {
      "aggs":{
        "price_count":{
          "cardinality": {
            "field": "price"
          }
        }
      }
    }
    

    示例5:stats统计count、max、min、avg、sum5个值

    POST /item/_search?size=0
    {
      "aggs":{
        "price_stats":{
          "stats": {
            "field": "price"
          }
        }
      }
    }
    

    结果如下:

    {
      "took" : 3,
      "timed_out" : false,
      "_shards" : {
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
        "total" : {
          "value" : 5,
          "relation" : "eq"
        },
        "max_score" : null,
        "hits" : [ ]
      },
      "aggregations" : {
        "price_stats" : {
          "count" : 5,
          "min" : 2333.0,
          "max" : 6888.0,
          "avg" : 4059.2,
          "sum" : 20296.0
        }
      }
    }
    

    示例6:extended stats,stats的增强版,增加了平方和、方差、标准差、平均值加/减两个标准差的区间。

    POST /item/_search?size=0
    {
      "aggs":{
        "price_stats":{
          "extended_stats": {
            "field": "price"
          }
        }
      }
    }
    

    查询结果:

    {
      "took" : 4,
      "timed_out" : false,
      "_shards" : {
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
        "total" : {
          "value" : 5,
          "relation" : "eq"
        },
        "max_score" : null,
        "hits" : [ ]
      },
      "aggregations" : {
        "price_stats" : {
          "count" : 5,
          "min" : 2333.0,
          "max" : 6888.0,
          "avg" : 4059.2,
          "sum" : 20296.0,
          "sum_of_squares" : 9.9816722E7,
          "variance" : 3486239.7599999993,
          "std_deviation" : 1867.1474928349928,
          "std_deviation_bounds" : {
            "upper" : 7793.494985669986,
            "lower" : 324.9050143300142
          }
        }
      }
    }
    

    示例7:Percentiles 占比百分位对应的值统计

    
    POST /item/_search?size=0
    {
      "aggs":{
        "price_percents":{
          "percentiles": {
            "field": "price"
            
          }
        }
      }
    }
    
    #指定分位值
    POST /item/_search?size=0
    {
      "aggs":{
        "price_percents":{
          "percentiles": {
            "field": "price",
            "percents": [
              1,
              5,
              25,
              50,
              75,
              95,
              99
            ]
          }
        }
      }
    }
    

    查询结果:

    ......
      "aggregations" : {
        "price_percents" : {
          "values" : {
            "1.0" : 2333.0000000000005,
            "5.0" : 2333.0,
            "25.0" : 2599.25,
            "50.0" : 2688.0,
            "75.0" : 5996.25,
            "95.0" : 6888.0,
            "99.0" : 6888.0
          }
        }
      }
    }
    
    

    Percentiles rank 统计值小于等于指定值的文档占比

    price小于3000和5000的占比

    POST /item/_search?size=0
    {
      "aggs":{
        "price_percents":{
          "percentile_ranks": {
            "field": "price"
            , "values": [3000,5000]
          }
        }
      }
    }
    

    桶聚合

    他执行的是对文档分组的操作,把满足相关特性的文档分到一个桶里,即桶分。输出结果往往是一个个包含多个文档的桶。

    示例1:分组求平均值

    POST /item/_search
    {
      "size": 0,
      "aggs": {
        "group_by_price": {
          "range": {
            "field": "price",
            "ranges": [
              {
                "from": 50,
                "to": 100
              },
              {
                "from": 2000,
                "to": 3000
              },
              {
                "from": 3000,
                "to": 5000
              }
            ]
          },
          "aggs": {
            "average_price": {
              "avg": {
                "field": "price"
              }
            }
          }
        }
      }
    }
    
    

    查询结果:

    {
      "took" : 1,
      "timed_out" : false,
      "_shards" : {
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
        "total" : {
          "value" : 5,
          "relation" : "eq"
        },
        "max_score" : null,
        "hits" : [ ]
      },
      "aggregations" : {
        "group_by_price" : {
          "buckets" : [
            {
              "key" : "50.0-100.0",
              "from" : 50.0,
              "to" : 100.0,
              "doc_count" : 0,
              "average_price" : {
                "value" : null
              }
            },
            {
              "key" : "2000.0-3000.0",
              "from" : 2000.0,
              "to" : 3000.0,
              "doc_count" : 3,
              "average_price" : {
                "value" : 2569.6666666666665
              }
            },
            {
              "key" : "3000.0-7000.0",
              "from" : 3000.0,
              "to" : 7000.0,
              "doc_count" : 2,
              "average_price" : {
                "value" : 6293.5
              }
            }
          ]
        }
      }
    }
    
    

    示例2:分组的文档个数统计

    POST /item/_search
    {
      "size": 0,
      "aggs": {
        "group_by_price": {
          "range": {
            "field": "price",
            "ranges": [
              {
                "from": 50,
                "to": 100
              },
              {
                "from": 2000,
                "to": 3000
              },
              {
                "from": 3000,
                "to": 7000
              }
            ]
          },
          "aggs": {
            "average_price": {
              "value_count": {
                "field": "price"
              }
            }
          }
        }
      }
    }
    

    示例3:使用having语法

    POST /item/_search
    {
      "size": 0,
      "aggs": {
        "group_by_price": {
          "range": {
            "field": "price",
            "ranges": [
              {
                "from": 50,
                "to": 100
              },
              {
                "from": 2000,
                "to": 3000
              },
              {
                "from": 3000,
                "to": 7000
              }
            ]
          },
          "aggs": {
            "average_price": {
              "avg": {
                "field": "price"
              }
            },
            "having":{
              "bucket_selector": {
                "buckets_path": {
                  "avg_price":"average_price"
                },
                "script": {
                  "source": "params.avg_price >=2600"
                }
              }
            }
          }
      
        }
      }
    }
    
  • 相关阅读:
    本草中国-----境界
    【全开源】Java聚合跑腿系统对接云洋聚合跑腿系统源码低价快递小程序APP公众号源码
    Tarjan—离线求LCA
    Java进阶面试问题列表
    【python海洋专题四十三】海洋指数画法--单色渐变柱状图
    LSTM基础
    整合Mybatis、Servlet、Mysql、Axios、Filter、Session写一个入门级项目:非常适合初接触JavaWeb的小白白来进阶
    R语言多个data.frame数据合并:cbind函数从列方向合并两个data.frame,rbind函数从行方向合并两个data.frame
    原型继承
    干货 | 一改测试步骤代码就全写?为什么不试试用 Yaml实现数据驱动?
  • 原文地址:https://www.cnblogs.com/javammc/p/16411055.html