• ZKP6.1 Discrete-log-based Polynomial Commitments (Preliminary)


    ZKP学习笔记

    ZK-Learning MOOC课程笔记

    Lecture 6: Discrete-log-based Polynomial Commitments (Yupeng Zhang)

    • Recall
      • How to build an efficient SNARK?
        • A polynomial commitment scheme + A polynomial interactive oracle proof (IOP) = SNARK for general circuits
      • Plonk
        • Univariate polynomial commitment + Plonk Polynomial IOP = SNARK for general circuits
      • Interactive proofs
        • Multivariate polynomial commitment + Sumcheck protocol = SNARK for general circuits
      • polynomial commitment
        在这里插入图片描述

    在这里插入图片描述

    6.1 Background

    • Group: Closure, Associativity, Identity, Inverse.
    • Generator of a group: An element g g g that generates all elements in the group by taking all powers of g g g
    • Discrete logarithm assumption
      • A group G G G has an alternative representation as the powers of the generator g g g: { g , g 2 , g 3 , . . . , g p − 1 } \{g, g^2, g^3,...,g^{p-1}\} {g,g2,g3,...,gp1}
      • Discrete logarithm problem: given y ∈ G y \in G yG, find x x x s.t. g x = y g^x = y gx=y
      • Discrete-log assumption: discrete-log problem is computationally hard.
    • (Computational) Diffie-Hellman assumption: Given G , g , g x , g y G, g, g^x, g^y G,g,gx,gy, cannot compute g x y g^{xy} gxy
    • Bilinear pairing:
      • ( p , G , g , G T , e ) (p, G, g, G_T, e) (p,G,g,GT,e)
      • G G G and G T G_T GT are both multiplicative cyclic groups of order p p p, g g g is the generator of G G G.
      • G G G: base group, G T G_T GT target group
      • Pairing: e ( P x , Q y ) = e ( P , Q ) x y e(P^x,Q^y) = e(P,Q)^{xy} e(Px,Qy)=e(P,Q)xy
        • Example: e ( g x , g y ) = e ( g , g ) x y = e ( g x y , g ) e(g^x,g^y) = e(g,g)^{xy} = e(g^{xy},g) e(gx,gy)=e(g,g)xy=e(gxy,g)
      • Given g x g^x gx and g y g^y gy , a pairing can check that some element h = g x y h = g^{xy} h=gxy without knowing x x x and y y y.
    • BLS signature [Boneh–Lynn–Shacham’2001]
      在这里插入图片描述
  • 相关阅读:
    iPhone关闭隐私后,仍在收集数据
    MySQL中的隐式转换造成的索引失效
    Pod 健康检查和服务可用性检查
    MyBatis框架的搭建以及使用教程
    【谢希尔 计算机网络】第4章 网络层
    注解配置SpringMVC
    JS逆向爬虫---请求参数加密②【某麦数据analysis参数加密】
    嵌入式Linux和stm32区别? 之间有什么关系吗?
    华清远见11.2
    springboot进行elasticsearch的开发
  • 原文地址:https://blog.csdn.net/weixin_45347752/article/details/133988092