前言:本文旨在介绍网络安全相关基础知识体系和框架
目录
网络安全是信息安全学科的重要组成部分,信息安全是一门交叉学科:
信息安全从总体上可以分成5个层次:
信息安全的目标是保护信息的机密性、完整性、抗否认性和可用性
也有的观点认为是机密性、完整性和可用性,即 CIA(Confidentiality Integrity Availability)
保密性是指保证信息不能被非授权访问,即使非授权用户得到信息也无法知晓信息内容,因而不能使用
完整性是指维护信息的一致性,即信息在生成、传输、存储和使用过程中不应发生人为或非人为的非授权篡改。一般通过访问控制阻止篡改行为,同时通过消息摘要算法来检验信息是否被篡改。信息的完整性包括两个方面:
可用性是指保障信息资源随时可提供服务的能力特性,即授权用户根据需要可以随时访问所需信息,可用性是信息资源服务功能和性能可靠性的度量,涉及到物理、网络、系统、数据、应用和用户等多方面的因素,是对信息网络总体可靠性的要求
除了这三方面的要求,信息还要求
- 真实性,即个体身份的认证,适用于用户、进程、系统等
- 可说明性,即确保个体的活动可被跟踪
- 可靠性,即行为和结果的可靠性、一致性
倡导通信保密措施,主要标志是1949年香农发表的《保密通信的信息理论》,那个时候通信技术还不发达,电脑只是零散地位于不同的地点,信息系统的安全仅限于保证电脑的物理安全,以及通过密码(主要是序列密码)解决通信安全的保密问题。侧重于保证数据在从一地传送到另一地时的安全性。把电脑安置在相对安全的地点,不容许非授权用户接近,就基本可以保证数据的安全性了。这个时期的安全性是指信息的保密性,对安全理论和技术的研究也仅限于密码学。
60年代后,半导体集成电路的飞速发展推动了计算机软、硬件的发展,计算机和网络的广泛应用使数据传输已经可以通过计算机网络来完成。人们对安全的关注已经逐渐扩展为以保密性、完整性和可用性为目标的信息安全阶段,主要保证动态信息在传输过程中不被窃取,即使窃取了也不能读出正确的信息;还要保证数据在传输过程中不被篡改,让读取信息的人能够看到正确无误的信息。1977年美国国家标准局(NBS)公布的国家数据加密标准(DES)和1983年美国国防部公布的可信计算机系统评价准则(TCSEC,俗称橘皮书)标志着解决计算机信息系统保密性问题的研究和应用迈上了历史的新台阶。
开始倡导信息保障(IA,Information Assurance)。信息保障的核心思想是对系统或者数据的4个方面的要求:保护(Protect),检测(Detect),反应(React)和恢复(Restore),结构如图:
利用4个单词首字母表示为:PDRR,称之为 PDRR保障体系,其中:
随着时代发展和人们的需求,网络安全被正式的提出并且应用:网络安全(Network Security)是一门涉及计算机科学、网络技术、通信技术、密码技术、信息安全技术、应用数学、数论、信息论等多种学科的综合性科学
攻击和防御总是相对的,防御是为了抵御攻击的,如果不知道如何攻击,再好的防守也是经不住考验的,攻击技术主要包括五个方面:
我们不应该去主动攻击别人,但是对于别人的攻击,我们需要使用防御技术,合法的保证我们的合法权利不被侵犯,防御技术包括四大方面:
从层次体系上,可以将网络安全分成四个层次上的安全:
物理安全,逻辑安全,操作系统安全,联网安全
物理安全主要包括五个方面:
计算机的逻辑安全需要用口令、文件许可等方法来实现。 可以限制登录的次数或对试探操作加上时间限制;可以用软件来保护存储在计算机文件中的信息; 限制存取的另一种方式是通过硬件完成,在接收到存取要求后,先询问并校核口令,然后访问列于目录中的授权用户标志号。 此外,有一些安全软件包也可以跟踪可疑的、未授权的存取企图,例如,多次登录或请求别人的文件。
操作系统是计算机中最基本、最重要的软件。 同一计算机可以安装几种不同的操作系统。 如果计算机系统可提供给许多人使用,操作系统必须能区分用户,以便于防止相互干扰。 一些安全性较高、功能较强的操作系统可以为计算机的每一位用户分配账户。 通常,一个用户一个账户。操作系统不允许一个用户修改由另一个账户产生的数据。
联网的安全性通过两方面的安全服务来达到:
网络需要与外界联系,受到许多方面的威胁:
物理威胁包括四个方面:偷窃、废物搜寻、间谍行为和身份识别错误
系统漏洞造成的威胁包括三个方面:乘虚而入、不安全服务、配置和初始化错误
线缆连接造成的威胁包括三个方面:窃听、拨号进入和冒名顶替
有害程序造成的威胁包括三个方面:病毒、代码炸弹和特洛伊木马
根据美国国防部开发的计算机安全标准——可信任计算机标准评价准则(Trusted Computer Standards Evaluation Criteria:TCSEC),也就是网络安全橙皮书,一些计算机安全级别被用来评价一个计算机系统的安全性。自从1985年橙皮书成为美国国防部的标准以来,就一直没有改变过,多年以来一直是评估多用户主机和小型操作系统的主要方法。 其他子系统(如数据库和网络)也一直用橙皮书来解释评估。
橙皮书把安全的级别从低到高分成4个类别:D类、C类、B类和A类,每类又分几个级别
D级是最低的安全级别,拥有这个级别的操作系统就像一个门户大开的房子,任何人都可以自由进出,是完全不可信任的。 对于硬件来说,是没有任何保护措施的,操作系统容易受到损害,没有系统访问限制和数据访问限制,任何人不需任何账户都可以进入系统,不受任何限制可以访问他人的数据文件。 属于这个级别的操作系统有: DOS和Windows98等。
C1是C类的一个安全子级。C1又称选择性安全保护(Discretionary Security Protection)系统,它描述了一个典型的用在Unix系统上安全级别。这种级别的系统对硬件又有某种程度的保护,如用户拥有注册账号和口令,系统通过账号和口令来识别用户是否合法,并决定用户对程序和信息拥有什么样的访问权,但硬件受到损害的可能性仍然存在。 用户拥有的访问权是指对文件和目标的访问权。文件的拥有者和超级用户可以改变文件的访问属性,从而对不同的用户授予不通的访问权限。
使用附加身份验证就可以让一个C2级系统用户在不是超级用户的情况下有权执行系统管理任务。授权分级使系统管理员能够给用户分组,授予他们访问某些程序的权限或访问特定的目录。 能够达到C2级别的常见操作系统有:
B级中有三个级别
B1级,即标志安全保护(Labeled Security Protection),是支持多级安全(例如:秘密和绝密)的第一个级别,这个级别说明处于强制性访问控制之下的对象,系统不允许文件的拥有者改变其许可权限。安全级别存在保密、绝密级别,这种安全级别的计算机系统一般在政府机构中,比如国防部和国家安全局的计算机系统。
B2级,又叫结构保护级别(Structured Protection),它要求计算机系统中所有的对象都要加上标签,而且给设备(磁盘、磁带和终端)分配单个或者多个安全级别。
B3级,又叫做安全域级别(Security Domain),使用安装硬件的方式来加强域的安全,例如,内存管理硬件用于保护安全域免遭无授权访问或更改其他安全域的对象。该级别也要求用户通过一条可信任途径连接到系统上。
A级,又称验证设计级别(Verified Design),是当前橙皮书的最高级别,它包含了一个严格的设计、控制和验证过程。该级别包含了较低级别的所有的安全特性 设计必须从数学角度上进行验证,而且必须进行秘密通道和可信任分布分析。可信任分布(Trusted Distribution)的含义是:硬件和软件在物理传输过程中已经受到保护,以防止破坏安全系统。