给你一个有 n 个节点的 有向无环图(DAG),请你找出所有从节点 0 到节点 n-1 的路径并输出(不要求按特定顺序)。 graph[i] 是一个从节点 i 可以访问的所有节点的列表(即从节点 i 到节点 graph[i][j]存在一条有向边)。
示例1:输入:graph = [[1,2],[3],[3],[]] 输出:[[0,1,3],[0,2,3]]
示例2:输入:graph = [[4,3,1],[3,2,4],[3],[4],[]] 输出:[[0,4],[0,3,4],[0,1,3,4],[0,1,2,3,4],[0,1,4]]
- // dfs
- class Solution {
- List
> list = new ArrayList<>();
- LinkedList
path = new LinkedList<>(); -
- public List
> allPathsSourceTarget(int[][] graph) {
- path.add(0);
- dfs(graph, 0);
- return list;
- }
-
- public void dfs(int[][] graph, int node){
- if(node == graph.length - 1){
- list.add(new ArrayList<>(path));
- return;
- }
-
- for(int i = 0; i < graph[node].length; i++){
- path.add(graph[node][i]);
- dfs(graph, graph[node][i]);
- path.removeLast();
- }
- }
- }
给你一个由 '1'(陆地)和 '0'(水)组成的的二维网格,请你计算网格中岛屿的数量。岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。此外,你可以假设该网格的四条边均被水包围。
示例1:
输入:grid = [ ["1","1","1","1","0"], ["1","1","0","1","0"], ["1","1","0","0","0"], ["0","0","0","0","0"] ] 输出:1
- // dfs (以下三种方式等价)
- class Solution {
- public int numIslands(char[][] grid) {
- int count = 0;
- for(int i = 0; i < grid.length; i++){
- for(int j = 0; j < grid[0].length; j++){
- if(grid[i][j] == '1'){
- count++;
- dfs(grid, i, j);
- }
- }
- }
- return count;
- }
-
- public void dfs(char[][] grid, int i, int j){
- if(i < 0 || i >= grid.length || j < 0 || j >= grid[0].length || grid[i][j] == '0'){
- return;
- }
- grid[i][j] = '0';
- dfs(grid, i - 1, j);
- dfs(grid, i + 1, j);
- dfs(grid, i, j - 1);
- dfs(grid, i, j + 1);
- }
- }
-
-
- class Solution {
- int[][] positions = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
- public int numIslands(char[][] grid) {
- int count = 0;
- for(int i = 0; i < grid.length; i++){
- for(int j = 0; j < grid[0].length; j++){
- if(grid[i][j] == '1'){
- count++;
- dfs(grid, i, j);
- }
- }
- }
- return count;
- }
-
- public void dfs(char[][] grid, int i, int j){
- if(i < 0 || i >= grid.length || j < 0 || j >= grid[0].length || grid[i][j] == '0'){
- return;
- }
-
- grid[i][j] = '0';
- for(int[] pos : positions){
- int newRow = i + pos[0];
- int newColumn = j + pos[1];
- dfs(grid, newRow, newColumn);
- }
- }
- }
-
-
- class Solution {
- int[][] positions = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
- boolean[][] visited; // 通过判断该位置是否被访问过,而不是将1修改为0
-
- public int numIslands(char[][] grid) {
- visited = new boolean[grid.length][grid[0].length];
- int count = 0;
- for(int i = 0; i < grid.length; i++){
- for(int j = 0; j < grid[0].length; j++){
- if(grid[i][j] == '1' && !visited[i][j]){
- count++;
- dfs(grid, i, j);
- }
- }
- }
- return count;
- }
-
- public void dfs(char[][] grid, int i, int j){
- if(i < 0 || i >= grid.length || j < 0 || j >= grid[0].length || visited[i][j] || grid[i][j] == '0'){
- return;
- }
-
- visited[i][j] = true;
- for(int[] pos : positions){
- int newRow = i + pos[0];
- int newColumn = j + pos[1];
- dfs(grid, newRow, newColumn);
- }
- }
- }
- // bfs 以下三种方式等价
- class Solution {
- public int numIslands(char[][] grid) {
- int count = 0;
- for(int i = 0; i < grid.length; i++){
- for(int j = 0; j < grid[0].length; j++){
- if(grid[i][j] == '1'){
- count++;
- bfs(grid, i, j);
- }
- }
- }
- return count;
- }
-
- public void bfs(char[][] grid, int i, int j){
- Queue<int[]> queue = new LinkedList<>();
- queue.offer(new int[]{i, j});
- while(!queue.isEmpty()){
- int[] cur = queue.poll();
- i = cur[0];
- j = cur[1];
- if(i < 0 || i >= grid.length || j < 0 || j >= grid[0].length || grid[i][j] == '0'){
- continue;
- }
- grid[i][j] = '0';
- queue.offer(new int[]{i - 1, j});
- queue.offer(new int[]{i + 1, j});
- queue.offer(new int[]{i, j - 1});
- queue.offer(new int[]{i, j + 1});
- }
- }
- }
-
-
- class Solution {
- int[][] positions = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
- public int numIslands(char[][] grid) {
- int count = 0;
- for(int i = 0; i < grid.length; i++){
- for(int j = 0; j < grid[0].length; j++){
- if(grid[i][j] == '1'){
- count++;
- bfs(grid, i, j);
- }
- }
- }
- return count;
- }
-
- public void bfs(char[][] grid, int i, int j){
- Queue<int[]> queue = new LinkedList();
- queue.offer(new int[]{i, j});
- grid[i][j] = '0';
- while(!queue.isEmpty()){
- int[] cur = queue.poll();
- for(int[] pos : positions){
- int newRow = cur[0] + pos[0];
- int newColumn = cur[1] + pos[1];
- if(newRow < 0 || newRow >= grid.length || newColumn < 0 || newColumn >= grid[0].length || grid[newRow][newColumn] == '0'){
- continue;
- }
- grid[newRow][newColumn] = '0'; // 防止下次for循环将同样的位置(下次计算得到的newRow,newColumn可能会与本次相同)加入queue中,造成死循环
- queue.offer(new int[]{newRow, newColumn});
- }
- }
- }
- }
-
-
- class Solution {
- int[][] positions = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
- boolean[][] visited; // 通过判断该位置是否被访问过,而不是将1修改为0
-
- public int numIslands(char[][] grid) {
- visited = new boolean[grid.length][grid[0].length];
- int count = 0;
- for(int i = 0; i < grid.length; i++){
- for(int j = 0; j < grid[0].length; j++){
- if(grid[i][j] == '1' && !visited[i][j]){
- count++;
- bfs(grid, i, j);
- }
- }
- }
- return count;
- }
-
- public void bfs(char[][] grid, int i, int j){
- Queue<int[]> queue = new LinkedList();
- queue.offer(new int[]{i, j});
- visited[i][j] = true;
- while(!queue.isEmpty()){
- int[] cur = queue.poll();
- for(int[] pos : positions){
- int newRow = cur[0] + pos[0];
- int newColumn = cur[1] + pos[1];
- if(newRow < 0 || newRow >= grid.length || newColumn < 0 || newColumn >= grid[0].length || grid[newRow][newColumn] == '0' || visited[newRow][newColumn]){
- continue;
- }
- visited[newRow][newColumn] = true;
- queue.offer(new int[]{newRow, newColumn});
- }
- }
- }
- }
给你一个大小为 m x n 的二进制矩阵 grid 。岛屿 是由一些相邻的 1 (代表土地) 构成的组合,这里的「相邻」要求两个 1 必须在 水平或者竖直的四个方向上 相邻。你可以假设 grid 的四个边缘都被 0(代表水)包围着。岛屿的面积是岛上值为 1 的单元格的数目。计算并返回 grid 中最大的岛屿面积。如果没有岛屿,则返回面积为 0 。

输入:grid = [[0,0,1,0,0,0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1,1,1,0,0,0],[0,1,1,0,1,0,0,0,0,0,0,0,0],[0,1,0,0,1,1,0,0,1,0,1,0,0],[0,1,0,0,1,1,0,0,1,1,1,0,0],[0,0,0,0,0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1,1,1,0,0,0],[0,0,0,0,0,0,0,1,1,0,0,0,0]] 输出:6
- // dfs
- class Solution {
- int area;
- public int maxAreaOfIsland(int[][] grid) {
- int maxArea = 0;
- for(int i = 0; i < grid.length; i++){
- for(int j = 0; j < grid[0].length; j++){
- if(grid[i][j] == 1){
- area = 0;
- dfs(grid, i, j);
- maxArea = Math.max(maxArea, area);
- }
- }
- }
- return maxArea;
- }
-
- public void dfs(int[][] grid, int i, int j){
- if(i < 0 || i >= grid.length || j < 0 || j >= grid[0].length || grid[i][j] == 0){
- return;
- }
- area++;
- grid[i][j] = 0;
- dfs(grid, i - 1, j);
- dfs(grid, i + 1, j);
- dfs(grid, i, j - 1);
- dfs(grid, i, j + 1);
- }
- }
- // bfs
- class Solution {
- int area;
- public int maxAreaOfIsland(int[][] grid) {
- int maxArea = 0;
- for(int i = 0; i < grid.length; i++){
- for(int j = 0; j < grid[0].length; j++){
- if(grid[i][j] == 1){
- area = 0;
- bfs(grid, i, j);
- maxArea = Math.max(maxArea, area);
- }
- }
- }
- return maxArea;
- }
-
- public void bfs(int[][] grid, int i, int j){
- Queue<int[]> queue = new LinkedList<>();
- queue.offer(new int[]{i, j});
- while(!queue.isEmpty()){
- int[] cur = queue.poll();
- i = cur[0];
- j = cur[1];
- if(i >= 0 && i < grid.length && j >= 0 && j < grid[0].length && grid[i][j] == 1){
- area++;
- grid[i][j] = 0;
- queue.offer(new int[]{i - 1, j});
- queue.offer(new int[]{i + 1, j});
- queue.offer(new int[]{i, j - 1});
- queue.offer(new int[]{i, j + 1});
- }
- }
- }
- }
给定一个 row x col 的二维网格地图 grid ,其中:grid[i][j] = 1 表示陆地, grid[i][j] = 0 表示水域。网格中的格子 水平和垂直 方向相连(对角线方向不相连)。整个网格被水完全包围,但其中恰好有一个岛屿(或者说,一个或多个表示陆地的格子相连组成的岛屿)。岛屿中没有“湖”(“湖” 指水域在岛屿内部且不和岛屿周围的水相连)。格子是边长为 1 的正方形。网格为长方形,且宽度和高度均不超过 100 。计算这个岛屿的周长。

示例:输入:grid = [[0,1,0,0],[1,1,1,0],[0,1,0,0],[1,1,0,0]] 输出:16
- // dfs
- class Solution {
- int count = 0;
- public int islandPerimeter(int[][] grid) {
- for(int i = 0; i < grid.length; i++){
- for(int j = 0; j < grid[0].length; j++){
- if(grid[i][j] == 1){
- dfs(grid, i, j);
- }
- }
- }
- return count;
- }
-
- public void dfs(int[][] grid, int i, int j){
- if(i < 0 || i >= grid.length || j < 0 || j >= grid[0].length || grid[i][j] == 0){
- count++;
- return;
- }
- if(grid[i][j] == 2){
- return;
- }
- grid[i][j] = 2;
- dfs(grid, i - 1, j);
- dfs(grid, i + 1, j);
- dfs(grid, i, j - 1);
- dfs(grid, i, j + 1);
- }
- }
-
-
- class Solution {
- int[][] positions = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
- boolean[][] visited;
- int count;
- public int islandPerimeter(int[][] grid) {
- visited = new boolean[grid.length][grid[0].length];
- for(int i = 0; i < grid.length; i++){
- for(int j = 0; j < grid[0].length; j++){
- if(grid[i][j] == 1 && !visited[i][j]){
- dfs(grid, i, j);
- }
- }
- }
- return count;
- }
-
- public void dfs(int[][] grid, int i, int j){
- if(i < 0 || i >= grid.length || j < 0 || j >= grid[0].length || grid[i][j] == 0){
- count++;
- return;
- }
- if(visited[i][j] && grid[i][j] == 1){
- return;
- }
-
- visited[i][j] = true;
- for(int[] pos : positions){
- int newRow = i + pos[0];
- int newColumn = j + pos[1];
- dfs(grid, newRow, newColumn);
- }
- }
- }
- // bfs
- class Solution {
- int count = 0;
- public int islandPerimeter(int[][] grid) {
- for(int i = 0; i < grid.length; i++){
- for(int j = 0; j < grid[0].length; j++){
- if(grid[i][j] == 1){
- bfs(grid, i, j);
- }
- }
- }
- return count;
- }
-
- public void bfs(int[][] grid, int i, int j){
- Queue<int[]> queue = new LinkedList<>();
- queue.offer(new int[]{i, j});
- while(!queue.isEmpty()){
- int[] cur = queue.poll();
- i = cur[0];
- j = cur[1];
- if(i < 0 || i >= grid.length || j < 0 || j >= grid[0].length || grid[i][j] == 0){
- count++;
- continue;
- }
- if(grid[i][j] == 2){
- continue;
- }
-
- grid[i][j] = 2;
- queue.offer(new int[]{i - 1, j});
- queue.offer(new int[]{i + 1, j});
- queue.offer(new int[]{i, j - 1});
- queue.offer(new int[]{i, j + 1});
- }
- }
- }
-
-
- class Solution {
- int[][] positions = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
- boolean[][] visited;
- int count = 0;
- public int islandPerimeter(int[][] grid) {
- visited = new boolean[grid.length][grid[0].length];
- for(int i = 0; i < grid.length; i++){
- for(int j = 0; j < grid[0].length; j++){
- if(grid[i][j] == 1 && !visited[i][j]){
- bfs(grid, i, j);
- }
- }
- }
- return count;
- }
-
- public void bfs(int[][] grid, int i, int j){
- Queue<int[]> queue = new LinkedList<>();
- queue.offer(new int[]{i, j});
- visited[i][j] = true;
- while(!queue.isEmpty()){
- int[] cur = queue.poll();
- for(int[] pos : positions){
- int newRow = cur[0] + pos[0];
- int newColumn = cur[1] + pos[1];
- if(newRow < 0 || newRow >= grid.length || newColumn < 0 || newColumn >= grid[0].length || grid[newRow][newColumn] == 0){
- count++;
- continue;
- }
- if(visited[newRow][newColumn] && grid[newRow][newColumn] == 1){
- continue;
- }
- queue.offer(new int[]{newRow, newColumn});
- visited[newRow][newColumn] = true;
- }
- }
- }
- }
给你一个大小为 n x n 二进制矩阵 grid 。最多 只能将一格 0 变成 1 。返回执行此操作后,grid 中最大的岛屿面积是多少?岛屿 由一组上、下、左、右四个方向相连的 1 形成。
示例:输入: grid = [[1, 0], [0, 1]] 输出: 3
- // dfs
- class Solution {
- int islandSize; // 每个岛屿的大小
-
- public int largestIsland(int[][] grid) {
- int[][] positions = new int[][]{{-1, 0}, {0, 1}, {1, 0}, {0, -1}};
- int m = grid.length;
- int n = grid[0].length;
-
- Map
map = new HashMap<>(); // key为岛屿编号,value为岛屿大小 - int islandNumber = 2; // 岛屿编号从2开始,与0和1进行区分
- for(int i = 0; i < m; i++){
- for(int j = 0; j < n; j++){
- if(grid[i][j] == 1){
- islandSize = 0;
- dfs(grid, i, j, islandNumber);
- map.put(islandNumber, islandSize);
- islandNumber++;
- }
- }
- }
-
- int result = Integer.MIN_VALUE;
- for(int i = 0; i < m; i++){
- for(int j = 0; j < n; j++){
- if(grid[i][j] != 0){
- continue;
- }
- int curSize = 1;
- Set
set = new HashSet<>(); - for(int[] pos : positions){
- int newRow = i + pos[0];
- int newColumn = j + pos[1];
- if(newRow < 0 || newRow >= m || newColumn < 0 || newColumn >= n || grid[newRow][newColumn] == 0){
- continue;
- }
- islandNumber = grid[newRow][newColumn];
- if(set.contains(islandNumber) || !map.containsKey(islandNumber)){
- continue;
- }
- set.add(islandNumber);
- curSize += map.get(islandNumber);
- }
- result = Math.max(result, curSize);
- }
- }
- return result == Integer.MIN_VALUE ? m * n : result;
- }
-
- public void dfs(int[][] grid, int i, int j, int islandNumber){
- if(i < 0 || i >= grid.length || j < 0 || j >= grid[0].length || grid[i][j] != 1){
- return;
- }
- islandSize++;
- grid[i][j] = islandNumber;
- dfs(grid, i - 1, j, islandNumber);
- dfs(grid, i + 1, j, islandNumber);
- dfs(grid, i, j - 1, islandNumber);
- dfs(grid, i, j + 1, islandNumber);
- }
- }
给你一个大小为 m x n 的二进制矩阵 grid ,其中 0 表示一个海洋单元格、1 表示一个陆地单元格。一次 移动 是指从一个陆地单元格走到另一个相邻(上、下、左、右)的陆地单元格或跨过 grid 的边界。返回网格中 无法 在任意次数的移动中离开网格边界的陆地单元格的数量。

示例:输入:grid = [[0,0,0,0],[1,0,1,0],[0,1,1,0],[0,0,0,0]] 输出:3
- // dfs
- class Solution {
- public int numEnclaves(int[][] grid) {
- for(int i = 0; i < grid.length; i++){
- if(grid[i][0] == 1){ // 左侧
- dfs(grid, i, 0);
- }
- if(grid[i][grid[0].length - 1] == 1){ // 右侧
- dfs(grid, i, grid[0].length - 1);
- }
- }
- for(int j = 1; j < grid[0].length - 1; j++){
- if(grid[0][j] == 1){ // 上侧
- dfs(grid, 0, j);
- }
- if(grid[grid.length - 1][j] == 1){ // 下侧
- dfs(grid, grid.length - 1, j);
- }
- }
-
- int count = 0;
- for(int i = 0; i < grid.length; i++){
- for(int j = 0; j < grid[0].length; j++){
- if(grid[i][j] == 1){
- count++;
- }
- }
- }
- return count;
- }
-
- public void dfs(int[][] grid, int i, int j){
- if(i < 0 || i >= grid.length || j < 0 || j >= grid[0].length || grid[i][j] == 0){
- return;
- }
- grid[i][j] = 0;
- dfs(grid, i - 1, j);
- dfs(grid, i + 1, j);
- dfs(grid, i, j - 1);
- dfs(grid, i, j + 1);
- }
- }
- // bfs
- class Solution {
- public int numEnclaves(int[][] grid) {
- for(int i = 0; i < grid.length; i++){
- if(grid[i][0] == 1){ // 左侧
- bfs(grid, i, 0);
- }
- if(grid[i][grid[0].length - 1] == 1){ // 右侧
- bfs(grid, i, grid[0].length - 1);
- }
- }
- for(int j = 1; j < grid[0].length - 1; j++){
- if(grid[0][j] == 1){ // 上侧
- bfs(grid, 0, j);
- }
- if(grid[grid.length - 1][j] == 1){ // 下侧
- bfs(grid, grid.length - 1, j);
- }
- }
-
- int count = 0;
- for(int i = 0; i < grid.length; i++){
- for(int j = 0; j < grid[0].length; j++){
- if(grid[i][j] == 1){
- count++;
- }
- }
- }
- return count;
- }
-
- public void bfs(int[][] grid, int i, int j){
- Queue<int[]> queue = new LinkedList<>();
- queue.offer(new int[]{i, j});
- while(!queue.isEmpty()){
- int[] cur = queue.poll();
- i = cur[0];
- j = cur[1];
- if(i >= 0 && i < grid.length && j >= 0 && j < grid[0].length && grid[i][j] == 1){
- grid[i][j] = 0;
- queue.offer(new int[]{i - 1, j});
- queue.offer(new int[]{i + 1, j});
- queue.offer(new int[]{i, j - 1});
- queue.offer(new int[]{i, j + 1});
- }
- }
- }
- }
给你一个 m x n 的矩阵 board ,由若干字符 'X' 和 'O' ,找到所有被 'X' 围绕的区域,并将这些区域里所有的 'O' 用 'X' 填充。

- // dfs
- class Solution {
- public void solve(char[][] board) {
- for(int i = 0; i < board.length; i++){
- if(board[i][0] == 'O'){
- dfs(board, i, 0);
- }
- if(board[i][board[0].length - 1] == 'O'){
- dfs(board, i, board[0].length - 1);
- }
- }
-
- for(int j = 1; j < board[0].length - 1; j++){
- if(board[0][j] == 'O'){
- dfs(board, 0, j);
- }
- if(board[board.length - 1][j] == 'O'){
- dfs(board, board.length - 1, j);
- }
- }
-
- for(int i = 0; i < board.length; i++){
- for(int j = 0; j < board[0].length; j++){
- if(board[i][j] == 'A'){
- board[i][j] = 'O';
- }else if(board[i][j] == 'O'){
- board[i][j] = 'X';
- }
- }
- }
- }
-
- public void dfs(char[][] board, int i, int j){
- if(i < 0 || i >= board.length || j < 0 || j >= board[0].length || board[i][j] == 'X'
- || board[i][j] == 'A'){
- return;
- }
- board[i][j] = 'A';
- dfs(board, i - 1, j);
- dfs(board, i + 1, j);
- dfs(board, i, j - 1);
- dfs(board, i, j + 1);
- }
- }
- // bfs
- class Solution {
- public void solve(char[][] board) {
- for(int i = 0; i < board.length; i++){
- if(board[i][0] == 'O'){
- bfs(board, i, 0);
- }
- if(board[i][board[0].length - 1] == 'O'){
- bfs(board, i, board[0].length - 1);
- }
- }
-
- for(int j = 1; j < board[0].length - 1; j++){
- if(board[0][j] == 'O'){
- bfs(board, 0, j);
- }
- if(board[board.length - 1][j] == 'O'){
- bfs(board, board.length - 1, j);
- }
- }
-
- for(int i = 0; i < board.length; i++){
- for(int j = 0; j < board[0].length; j++){
- if(board[i][j] == 'A'){
- board[i][j] = 'O';
- }else if(board[i][j] == 'O'){
- board[i][j] = 'X';
- }
- }
- }
- }
-
- public void bfs(char[][] board, int i, int j){
- Queue<int[]> queue = new LinkedList<>();
- queue.offer(new int[]{i, j});
- while(!queue.isEmpty()){
- int[] cur = queue.poll();
- i = cur[0];
- j = cur[1];
- if(i >= 0 && i < board.length && j >= 0 && j < board[0].length && board[i][j] == 'O'){
- board[i][j] = 'A';
- queue.offer(new int[]{i - 1, j});
- queue.offer(new int[]{i + 1, j});
- queue.offer(new int[]{i, j - 1});
- queue.offer(new int[]{i, j + 1});
- }
- }
- }
- }
有一个 m × n 的矩形岛屿,与 太平洋 和 大西洋 相邻。 “太平洋” 处于大陆的左边界和上边界,而 “大西洋” 处于大陆的右边界和下边界。这个岛被分割成一个由若干方形单元格组成的网格。给定一个 m x n 的整数矩阵 heights , heights[r][c] 表示坐标 (r, c) 上单元格 高于海平面的高度 。岛上雨水较多,如果相邻单元格的高度 小于或等于 当前单元格的高度,雨水可以直接向北、南、东、西流向相邻单元格。水可以从海洋附近的任何单元格流入海洋。返回网格标 result 的 2D 列表 ,其中 result[i] = [ri, ci] 表示雨水从单元格 (ri, ci) 流动 既可流向太平洋也可流向大西洋 。

- // dfs
- class Solution {
- int[][] positions = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
-
- public List
> pacificAtlantic(int[][] heights) {
- int m = heights.length;
- int n = heights[0].length;
- boolean[][] pacific = new boolean[m][n];
- boolean[][] atlantic = new boolean[m][n];
-
- for(int i = 0; i < m; i++){
- dfs(heights, pacific, i, 0);
- dfs(heights, atlantic, i, n - 1);
- }
- for(int j = 0; j < n; j++){
- dfs(heights, pacific, 0, j);
- dfs(heights, atlantic, m - 1, j);
- }
-
- List
> list = new ArrayList<>();
- for(int i = 0; i < m; i++){
- for(int j = 0; j < n; j++){
- if(pacific[i][j] && atlantic[i][j]){
- list.add(new ArrayList<>(Arrays.asList(i, j)));
- }
- }
- }
- return list;
- }
-
- public void dfs(int[][] heights, boolean[][] ocean, int i, int j){
- if(ocean[i][j]){
- return;
- }
-
- ocean[i][j] = true;
- for(int[] pos : positions){
- int newRow = i + pos[0];
- int newColumn = j + pos[1];
- if(newRow < 0 || newRow >= heights.length || newColumn < 0 || newColumn >= heights[0].length || heights[i][j] > heights[newRow][newColumn]){
- continue;
- }
- dfs(heights, ocean, newRow, newColumn);
- }
- }
- }
- // bfs
- class Solution {
- int[][] positions = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
-
- public List
> pacificAtlantic(int[][] heights) {
- int m = heights.length;
- int n = heights[0].length;
- boolean[][] pacific = new boolean[m][n];
- boolean[][] atlantic = new boolean[m][n];
-
- for(int i = 0; i < m; i++){
- bfs(heights, pacific, i, 0);
- bfs(heights, atlantic, i, n - 1);
- }
- for(int j = 0; j < n; j++){
- bfs(heights, pacific, 0, j);
- bfs(heights, atlantic, m - 1, j);
- }
-
- List
> list = new ArrayList<>();
- for(int i = 0; i < m; i++){
- for(int j = 0; j < n; j++){
- if(pacific[i][j] && atlantic[i][j]){
- list.add(new ArrayList<>(Arrays.asList(i, j)));
- }
- }
- }
- return list;
- }
-
- public void bfs(int[][] heights, boolean[][] ocean, int i, int j){
- ocean[i][j] = true;
- Queue<int[]> queue = new LinkedList<>();
- queue.offer(new int[]{i, j});
- while(!queue.isEmpty()){
- int[] cur = queue.poll();
- for(int[] pos : positions){
- int newRow = cur[0] + pos[0];
- int newColumn = cur[1] + pos[1];
- if(newRow < 0 || newRow >= heights.length || newColumn < 0 || newColumn >= heights[0].length || heights[cur[0]][cur[1]] > heights[newRow][newColumn] || ocean[newRow][newColumn]){
- continue;
- }
- ocean[newRow][newColumn] = true;
- queue.offer(new int[]{newRow, newColumn});
- }
- }
- }
- }
有 n 个房间,房间按从 0 到 n - 1 编号。最初,除 0 号房间外的其余所有房间都被锁住。你的目标是进入所有的房间。然而,你不能在没有获得钥匙的时候进入锁住的房间。当你进入一个房间,你可能会在里面找到一套不同的钥匙,每把钥匙上都有对应的房间号,即表示钥匙可以打开的房间。你可以拿上所有钥匙去解锁其他房间。给你一个数组 rooms 其中 rooms[i] 是你进入 i 号房间可以获得的钥匙集合。如果能进入 所有 房间返回 true,否则返回 false。
示例1:输入:rooms = [[1],[2],[3],[]] 输出:true
示例2:输入:rooms = [[1,3],[3,0,1],[2],[0]] 输出:false
- // dfs
- class Solution {
- public boolean canVisitAllRooms(List
> rooms)
{ - boolean[] visited = new boolean[rooms.size()];
- dfs(rooms, visited, 0);
- for(int i = 0; i < visited.length; i++){
- if(!visited[i]){
- return false;
- }
- }
- return true;
- }
-
- public void dfs(List
> rooms, boolean[] visited, int key)
{ - if(visited[key]){
- return;
- }
-
- visited[key] = true;
- List
curRoom = rooms.get(key); - for(int i = 0; i < curRoom.size(); i++){
- dfs(rooms, visited, curRoom.get(i));
- }
- }
- }
- // bfs
- class Solution {
- public boolean canVisitAllRooms(List
> rooms)
{ - boolean[] visited = new boolean[rooms.size()];
- bfs(rooms, visited);
- for(int i = 0; i < visited.length; i++){
- if(!visited[i]){
- return false;
- }
- }
- return true;
- }
-
- public void bfs(List
> rooms, boolean[] visited)
{ - Queue
queue = new LinkedList<>(); - queue.offer(0);
- while(!queue.isEmpty()){
- int curKey = queue.poll();
- visited[curKey] = true;
- List
curRoom = rooms.get(curKey); - for(int i = 0; i < curRoom.size(); i++){
- if(visited[curRoom.get(i)]){
- continue;
- }
- queue.offer(curRoom.get(i));
- }
- }
- }
- }
字典 wordList 中从单词 beginWord 和 endWord 的 转换序列 是一个按下述规格形成的序列 beginWord -> s1 -> s2 -> ... -> sk:①每一对相邻的单词只差一个字母;②对于 1 <= i <= k 时,每个 si 都在 wordList 中。注意, beginWord 不需要在 wordList 中;③sk == endWord。给你两个单词 beginWord 和 endWord 和一个字典 wordList ,返回 从 beginWord 到 endWord 的 最短转换序列 中的 单词数目 。如果不存在这样的转换序列,返回 0 。
示例:输入:beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log","cog"] 输出:5;
解释:一个最短转换序列是 "hit" -> "hot" -> "dot" -> "dog" -> "cog", 返回它的长度 5。
- class Solution {
- public int ladderLength(String beginWord, String endWord, List
wordList) { - Set
wordSet = new HashSet<>(wordList); // 转换为HashSet, 加快速度 - if(!wordSet.contains(endWord)){
- return 0;
- }
-
- // bfs 广搜只要搜到了终点,那么一定是最短的路径
- Queue
queue = new LinkedList<>(); - queue.offer(beginWord);
- Map
map = new HashMap<>(); // 存储单词对应的路径长度 - map.put(beginWord, 1);
-
- while(!queue.isEmpty()){
- String word = queue.poll();
- int pathLen = map.get(word);
- for(int i = 0; i < word.length(); i++){
- char[] chars = word.toCharArray();
- for(char j = 'a'; j <= 'z'; j++){
- chars[i] = j;
- String newWord = String.valueOf(chars);
- if(newWord.equals(endWord)){
- return pathLen + 1;
- }
- if(wordSet.contains(newWord) && !map.containsKey(newWord)){
- queue.offer(newWord);
- map.put(newWord, pathLen + 1);
- }
- }
- }
- }
- return 0;
- }
- }