图神经网络(GNN)是深度学习领域的一个重要模型,已广泛应用于推荐系统、计算机视觉、自然语言处理、分子分析、数据挖掘和异常检测等现实场景。GNN在从图形数据中学习方面表现出优越的能力,其变体已被广泛应用。
GNN的表达能力包括特征嵌入能力和拓扑表示能力两个方面。影响GNN表达能力的因素包括特征和拓扑,其中GNN在学习和保持图拓扑方面的缺陷是限制表达的主要因素。提高GNN表达能力的现有工作可分为图特征增强、图拓扑增强和GNN架构增强三类。
图(Graph)一般定义为节点(v)、边(e)的集合,可用于表示实体之间的复杂关系,并使用邻接矩阵和节点特征来表示。节点是图中的基本单元,边表示节点之间的关系。邻居节点是指与某个节点相邻接的节点。邻接矩阵是一个n×n的矩阵,其中n是节点的数量,矩阵中的元素表示节点之间是否存在边。节点特征是指每个节点的属性或特征向量。节点特征可以是任何类型的数据,如数字、文本或图像。
GNN是一种深度学习模型,用于学习图的表示。GNN的基本思想是通过迭代地聚合节点的邻居节点来更新每个节点的表示。本文介绍了一些基本的GNN模型,如Graph Convolutional Networks(GCNs)和Graph Attention Networks(GATs),以及一些增强GNN表达能力的模型,如Graph Isomorphism Networks(GINs)和Message Passing Neural Networks(MPNNs)。
图同构性是指两个图在节点和边的结构上完全相同,但节点和边的标签可以不同。在图神经网络中,图同构性是一个重要的概念,因为它可以帮助我们判断两个图是否相同,从而避免重复计算。GNNs可以通过学习图的特征来解决图同构问题。
W