There is an integer array nums sorted in ascending order (with distinct values).
Prior to being passed to your function, nums is possibly rotated at an unknown pivot index k (1 <= k < nums.length) such that the resulting array is [nums[k], nums[k+1], …, nums[n-1], nums[0], nums[1], …, nums[k-1]] (0-indexed). For example, [0,1,2,4,5,6,7] might be rotated at pivot index 3 and become [4,5,6,7,0,1,2].
Given the array nums after the possible rotation and an integer target, return the index of target if it is in nums, or -1 if it is not in nums.
You must write an algorithm with O(log n) runtime complexity.
Input: nums = [4,5,6,7,0,1,2], target = 0
Output: 4
Input: nums = [4,5,6,7,0,1,2], target = 3
Output: -1
Input: nums = [1], target = 0
Output: -1
From: LeetCode
Link: 33. Search in Rotated Sorted Array
Binary Search Approach: While the array is rotated, portions of it remain in sorted order. This observation is key to applying a binary search.
Midpoint Calculation: Start with the entire array as the search space. Calculate the midpoint of the current search space.
Comparison:
Convergence: Continue the binary search process until the target is found or the search space becomes empty.
Result: Return the index if the target is found, or -1 if not found.
int search(int* nums, int numsSize, int target) {
int left = 0, right = numsSize - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (nums[mid] == target) {
return mid;
}
if (nums[left] <= nums[mid]) {
if (target >= nums[left] && target < nums[mid]) {
right = mid - 1;
} else {
left = mid + 1;
}
} else {
if (target > nums[mid] && target <= nums[right]) {
left = mid + 1;
} else {
right = mid - 1;
}
}
}
return -1;
}