• CUDA学习笔记3——图像卷积实现


    分别采用GPU、CPU对图像进行sobel滤波处理

    #include 
    #include "cuda_runtime.h"
    #include "device_launch_parameters.h"
    #include
    #include  
    #include 
    
    #include 
    
    #define BLOCK_SIZE 1
    
    
    //图像卷积 GPU
    __global__ void sobel_gpu(unsigned char* in, unsigned char* out, const int Height, const int Width)
    {
    	int x = blockDim.x * blockIdx.x + threadIdx.x;
    	int y = blockDim.y + blockIdx.y + threadIdx.y;
    	int index = y * Width + x;
    
    	int Gx = 0;
    	int Gy = 0;
    
    	unsigned char x0, x1, x2, x3, x4, x5, x6, x7, x8;
    
    	if (x>0 && x<(Width-1) && y>0 && y<(Height-1))
    	{
    		x0 = in[(y - 1)*Width + (x - 1)];
    		x1 = in[(y - 1)*Width + (x)];
    		x2 = in[(y - 1)*Width + (x + 1)];
    		x3 = in[(y)*Width + (x - 1)];
    
    		x5 = in[(y)*Width + (x + 1)];
    		x6 = in[(y + 1)*Width + (x - 1)];
    		x7 = in[(y + 1)*Width + (x)];
    		x8 = in[(y + 1)*Width + (x + 1)];
    
    		Gx = (x0 + 2 * x3 + x6) - (x2 + 2 * x5 + x8);
    		Gy = (x0 + 2 * x1 + x2) - (x6 + 2 * x7 + x8);
    
    		out[index] = (abs(Gx) + abs(Gy)) / 2;
    	}
    }
    
    //Sobel滤波  CPU实现
    void sobel_cpu(cv::Mat srcImg, cv::Mat dstImg, int Height, int Width)
    {
    	int Gx = 0;
    	int Gy = 0;
    	for (int i = 1; i < Height - 1; i++)
    	{
    		unsigned char* dataUp = srcImg.ptr<unsigned char>(i - 1);
    		unsigned char* data = srcImg.ptr<unsigned char>(i);
    		unsigned char* dataDown = srcImg.ptr<unsigned char>(i + 1);
    		unsigned char* out = dstImg.ptr<unsigned char>(i);
    		for (int j = 1; j < Width - 1; j++)
    		{
    			Gx = (dataUp[j + 1] + 2 * data[j + 1] + dataDown[j + 1]) - (dataUp[j - 1] + 2 * data[j - 1] + dataDown[j - 1]);
    			Gy = (dataUp[j - 1] + 2 * dataUp[j] + dataUp[j + 1]) - (dataDown[j - 1] + 2 * dataDown[j] + dataDown[j + 1]);
    			out[j] = (abs(Gx) + abs(Gy)) / 2;
    		}
    	}
    }
    
    
    int main()
    {
    	cv::Mat src;
    	src = cv::imread("photo16.jpg");
    
    	cv::Mat grayImg,gaussImg;
    	cv::cvtColor(src, grayImg, cv::COLOR_BGR2GRAY);
    	cv::GaussianBlur(grayImg, gaussImg, cv::Size(3,3), 0, 0, cv::BORDER_DEFAULT);
    
    	int height = src.rows;
    	int width = src.cols;
    	//输出图像
    	cv::Mat dst_gpu(height, width, CV_8UC1, cv::Scalar(0));
    	//GPU存储空间
    	int memsize = height * width * sizeof(unsigned char);
    	//输入 输出
    	unsigned char* in_gpu;
    	unsigned char* out_gpu;
    
    	cudaMalloc((void**)&in_gpu, memsize);
    	cudaMalloc((void**)&out_gpu, memsize);
    
    	dim3 threadsPreBlock(BLOCK_SIZE, BLOCK_SIZE);
    	dim3 blocksPreGrid((width + threadsPreBlock.x - 1)/threadsPreBlock.x, (height + threadsPreBlock.y - 1)/threadsPreBlock.y);
    	
    	cudaMemcpy(in_gpu, gaussImg.data, memsize, cudaMemcpyHostToDevice);
    
    	sobel_gpu <<<blocksPreGrid, threadsPreBlock>>> (in_gpu, out_gpu, height, width);
    	
    	cudaMemcpy(dst_gpu.data, out_gpu, memsize, cudaMemcpyDeviceToHost);
    	//cudaDeviceSynchronize();
    
    	//输出图像
    	cv::Mat dst_cpu(height, width, CV_8UC1, cv::Scalar(0));
    	sobel_cpu(gaussImg, dst_cpu, height, width);
    
    	cv::imwrite("dst_cpu_save.png", dst_cpu);
    	cv::imwrite("dst_gpu_save.png", dst_gpu);
    
    	//cv::namedWindow("src", cv::WINDOW_NORMAL);
    	cv::imshow("src", src);
    	//cv::namedWindow("dst_cpu", cv::WINDOW_NORMAL);
    	cv::imshow("dst_cpu", dst_cpu);
    	//cv::namedWindow("dst_gpu", cv::WINDOW_NORMAL);
    	cv::imshow("dst_gpu", dst_gpu);
    	cv::waitKey();
    
    	cudaFree(in_gpu);
    	cudaFree(out_gpu);
    
    	return 0;
    }
    
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

  • 相关阅读:
    时候在你的职业技能中增加隐私知识了,那今天就说下CDPSE吧
    中英文说明书丨艾美捷双链RNA定量试剂盒
    机器学习 | 基本概念梳理——数据集评估,任务,训练和测试,期望结果
    第二十二次CCF计算机软件能力认证
    【无标题】
    【API接口工具】postman-请求使用详解
    PRBP20P-10/250C-EB、PRDP6G-10/30-CB电液比例直动式先导减压阀放大板
    【PAT乙】2022秋季赛后总结
    2023年Java核心技术大会(Core Java Week 2023)-核心PPT资料下载
    计算协方差矩阵df.cov()
  • 原文地址:https://blog.csdn.net/akadiao/article/details/133879454