• GPU virtualization technology guide


    Intro

    GPU virtualization technology is a method of utilizing a graphics processing unit (GPU) in virtualized environments, allowing multiple virtual machines to share physical GPU resources. This technology offers increased flexibility and resource utilization and is suitable for various scenarios such as cloud computing, virtual desktop infrastructure (VDI), scientific computing, and machine learning.

    Here are some common GPU virtualization technologies and related concepts:

    1. GPU Passthrough: In this mode, the entire physical GPU is directly assigned to a virtual machine, enabling direct access to the GPU hardware. This method provides the highest performance and is suitable for workloads requiring high-performance graphics rendering. However, GPU Passthrough requires hardware support for IOMMU (I/O memory management unit), and only one virtual machine can be provided with GPU resources at a time.
    2. Virtual GPU (vGPU): Virtual GPU technology divides the physical GPU into multiple virtual GPUs, each of which can be assigned to one or multiple virtual machines. This approach allows multiple virtual machines to share the same physical GPU through time-slicing or hardware time-sharing. Different virtual machines can run independently and use their dedicated virtual GPU, making it useful for graphics-intensive workloads and desktop virtualization.
    3. GPU virtualization software: GPU virtualization software provides an intermediary layer between the host and virtual machines to virtualize GPU operations and allocate them to different virtual machines. This approach is valuable in virtual machine environments where direct hardware access is not feasible. Some common GPU virtualization software includes NVIDIA’s NVIDIA Virtual GPU (vGPU) and AMD’s MxGPU.

    GPGPU (General-Purpose Graphics Processing Unit) is another related concept that refers to using GPUs for general-purpose computing tasks beyond graphics rendering. GPGPU leverages the parallel computing capabilities of GPUs to accelerate various compute-intensive tasks such as scientific computing, data analysis, and machine learning.

    Please note that the support and implementation of GPU virtualization technology depend on hardware and software vendors, so careful research and understanding of the associated limitations and requirements are crucial when selecting and deploying the appropriate technology.

    GPU Device Plugin

    First and foremost, we need a GPU device plugin for Kubernetes. The purpose of this plugin is to provide the necessary GPU resource information - number of GPUs, their capabilities, health status, and more - to the Kubernetes cluster. This plugin holds the responsibility of discovering available GPUs and exposing their capabilities to the cluster.

    Container Runtime Integration

    Next, we need to integrate the GPU device plugin with the container runtime that our Kubernetes cluster uses. For instance, if Docker is the container runtime of choice, we have to configure it to interact with the GPU device plugin. More specifically, Docker should request GPU resources from the device plugin when scheduling containers.

    GPU Resource Scheduling

    Taking advantage of Kubernetes’ inherent resource scheduling capabilities can be incredibly beneficial. By defining custom resource limits and requests in our container specifications, we can make Kubernetes allocate GPU resources to different containers. The Kubernetes scheduler will then take these resource necessities into account when positioning containers on the appropriate nodes.

    Isolation & Security

    Isolation between different containers’ GPU resources is a must-have. This aspect requires setting up proper isolation and robust security policies within the container runtime and the Kubernetes cluster. Technologies like NVIDIA’s Virtual GPU (vGPU) or Single Root I/O Virtualization (SR-IOV) can be beneficial for achieving higher levels of isolation.

    Monitoring & Management

    Lastly, instituting monitoring and management tools is imperative. We need to track GPU utilization, manage GPU allocations, and handle any resource contention. Depending on your needs, this might involve using Kubernetes monitoring tools or specialized GPU management frameworks.

    In conclusion, GPU virtualization in Kubernetes presents vast opportunities for efficiencies and optimizations. By developing a thorough understanding of the steps and considerations discussed above, you will find yourself well-equipped to make the most of GPUs in a Kubernetes environment.

    说明

    GPU虚拟化技术是一种将图形处理单元(GPU)用于虚拟化环境的方法,使多个虚拟机可以共享物理GPU资源。这种技术可以提供更高的灵活性和资源利用率,适用于许多场景,如云计算、虚拟桌面基础设施(VDI)、科学计算和机器学习等。

    以下是一些常见的GPU虚拟化技术和相关概念:

    1. GPU直通(GPU Passthrough):在这种模式下,整个物理GPU被直接分配给虚拟机,虚拟机可以直接访问GPU硬件。这种方式提供了最高的性能,并且适用于需要高性能图形渲染的工作负载。但是,这种方式需要支持IOMMU(I/O内存管理单元)的硬件,并且一次只能为一个虚拟机提供GPU资源。
    2. 虚拟GPU(vGPU):虚拟GPU技术将物理GPU划分为多个虚拟GPU,每个虚拟GPU可以分配给一个或多个虚拟机。这种方式通过时间片轮转或者硬件分时的方式,使多个虚拟机可以共享同一个物理GPU。不同的虚拟机可以独立地运行并使用自己的虚拟GPU,这种方式对于基于图形的工作负载和桌面虚拟化非常有用。
    3. GPU虚拟化软件:GPU虚拟化软件可以在宿主机和虚拟机之间提供一个中间层,将GPU操作虚拟化并分配给不同的虚拟机。这种方式对于无法直接访问硬件的虚拟机环境非常有用。一些常见的GPU虚拟化软件包括NVIDIA的NVIDIA Virtual GPU(vGPU)和AMD的MxGPU。

    GPGPU(通用计算图形处理单元)是另一个相关的概念,它指的是利用GPU执行通用计算任务,而不仅仅是图形渲染。GPGPU可以利用GPU的并行计算能力来加速各种计算密集型任务,如科学计算、数据分析和机器学习。

    请注意,GPU虚拟化技术的支持和实现取决于硬件和软件供应商,因此在选择和部署相应的技术时,需要仔细研究和了解相关的限制和要求。

    On the other hand

    在云原生环境中,GPU虚拟化技术可以通过以下步骤进行集成和落地实践:

    1. 选择适合的GPU虚拟化技术:目前市场上有多种GPU虚拟化技术,比如NVIDIA的vGPU、VMware的Virtual GPU等。根据实际需求和使用场景,选择适合的GPU虚拟化技术,并确保其与云原生环境的兼容性。
    2. 安装和配置GPU虚拟化驱动:根据所选GPU虚拟化技术的要求,安装相应的驱动程序,并确保其在云原生环境中正常运行。通常,这需要与容器平台供应商或操作系统供应商合作,确保驱动程序的兼容性和稳定性。
    3. 创建和管理虚拟GPU资源:在云原生环境中,可以使用容器编排工具(如Kubernetes)创建和管理虚拟GPU资源。通过定义相应的资源配额和约束条件,确保不同用户或应用可以按需获取相应的GPU资源。
    4. 集成容器运行时环境:将GPU虚拟化驱动与容器运行时环境(如Docker或containerd)集成,确保容器在运行时可以正确地使用虚拟GPU资源。这可能需要对容器运行时环境进行定制化配置或者开发插件。
    5. 开发和管理应用:开发应用时,需要考虑如何使用虚拟GPU资源,并确保应用的稳定性和性能。例如,对于游戏等图形密集型应用,需要针对虚拟GPU环境进行性能优化,并确保游戏画面的流畅度和稳定性。
    6. 监控和维护:在部署应用后,需要监控虚拟GPU资源的利用率和性能表现,以便及时发现和解决潜在问题。此外,还需要定期更新和加固系统,确保虚拟GPU环境的安全性和稳定性。

    总之,在云原生环境中实现GPU虚拟化的集成和落地实践需要多方面的协调和努力。需要选择适合的GPU虚拟化技术、配置相应的驱动程序、管理虚拟GPU资源、集成容器运行时环境、开发和管理应用以及监控和维护等多个步骤。与容器平台供应商、操作系统供应商和GPU供应商等多方合作,确保整个虚拟化方案的可行性。

  • 相关阅读:
    什么是IoT数字孪生?
    Docker的安装、启动和配置镜像加速
    YOLOv8轻量化模型:BiLevelRoutingAttention 结合C2f | CVPR2023
    平行港口:智慧绿色时代下港口工业智联网新形态与体系结构
    深度学习发展下的“摩尔困境”,人工智能又将如何破局?
    mockito 的 InjectMocks 和 Mock 有什么区别?
    javaweb医院科室管理系统springboot
    力扣(LeetCode)313. 超级丑数(2022.11.10)
    【毕业设计】基于Stm32的人体心率脉搏无线监测系统 - 单片机 物联网
    1688全店商品采集教程,1688店铺所有商品接口(详解1688店铺所有商品数据采集步骤方法和代码示例)
  • 原文地址:https://blog.csdn.net/weixin_38233104/article/details/133825426