• 【python海洋专题二十一】subplots共用一个colorbar


    上期读取subplot,并出图

    但是存在一些不完美,本期修饰

    本期内容

    共用colorbar

    1:未共用colorbar

    在这里插入图片描述

    共用colorbar

    1:横

    在这里插入图片描述

    2:纵

    在这里插入图片描述

    关键语句

    图片

    
    
    • 1

    cb_ax = fig.add_axes([0.15, 0.02, 0.6, 0.03]) #设置colarbar位置
    cbar = fig.colorbar(cs, cax=cb_ax, ax=ax, extend=‘both’, orientation=‘horizontal’, ticks=[0, 0.2, 0.4, 0.6, 0.8, 1.0]) #共享colorbar
    cbar.set_label(‘SSH’, fontsize=4, color=‘k’) # 设置color-bar的标签字体及其大小cbar.ax.tick_params(labelsize=5, direction=‘in’, length=2, color=‘k’) # 设置color-bar刻度字体大小。

    
    
    • 1

    往期推荐

    图片
    【python海洋专题一】查看数据nc文件的属性并输出属性到txt文件

    【python海洋专题二】读取水深nc文件并水深地形图
    【python海洋专题三】图像修饰之画布和坐标轴

    【Python海洋专题四】之水深地图图像修饰

    【Python海洋专题五】之水深地形图海岸填充

    【Python海洋专题六】之Cartopy画地形水深图

    【python海洋专题】测试数据

    【Python海洋专题七】Cartopy画地形水深图的陆地填充

    【python海洋专题八】Cartopy画地形水深图的contourf填充间隔数调整

    【python海洋专题九】Cartopy画地形等深线图

    【python海洋专题十】Cartopy画特定区域的地形等深线图

    【python海洋专题十一】colormap调色

    【python海洋专题十二】年平均的南海海表面温度图

    【python海洋专题十三】读取多个nc文件画温度季节变化图

    【python海洋专题十四】读取多个盐度nc数据画盐度季节变化图

    【python海洋专题十五】给colorbar加单位

    【python海洋专题十六】对大陆周边的数据进行临近插值

    【python海洋专题十七】读取几十年的OHC数据,画四季图

    【python海洋专题十八】读取Soda数据,画subplot的海表面高度四季变化图

    【python海洋专题十九】找范围的语句进阶版本

    【python海洋专题二十】subplots_adjust布局调整

    参考文献及其在本文中的作用

    1:Matplotlib的subplot画图, 共享colorbar - 华东博客 - 博客园 (cnblogs.com)

    全文代码

    # -*- coding: utf-8 -*-
    # ---导入数据读取和处理的模块-------
    from netCDF4 import Dataset
    from pathlib import Path
    import xarray as xr
    import numpy as np
    # ------导入画图相关函数--------
    import matplotlib.pyplot as plt
    from matplotlib.font_manager import FontProperties
    import matplotlib.ticker as ticker
    from cartopy import mpl
    import cartopy.crs as ccrs
    import cartopy.feature as feature
    from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
    from pylab import *
    # -----导入颜色包---------
    import seaborn as sns
    from matplotlib import cm
    import palettable
    from palettable.cmocean.diverging import Delta_4
    from palettable.colorbrewer.sequential import GnBu_9
    from palettable.colorbrewer.sequential import Blues_9
    from palettable.scientific.diverging import Roma_20
    from palettable.cmocean.diverging import Delta_20
    from palettable.scientific.diverging import Roma_20
    from palettable.cmocean.diverging import Balance_20
    from matplotlib.colors import ListedColormap
    #     -------导入插值模块-----
    from scipy.interpolate import interp1d  # 引入scipy中的一维插值库
    from scipy.interpolate import griddata  # 引入scipy中的二维插值库
    from scipy.interpolate import interp2d
    
    # ----define reverse_colourmap定义颜色的反向函数----
    def reverse_colourmap(cmap, name='my_cmap_r'):
        reverse = []
        k = []
    
        for key in cmap._segmentdata:
            k.append(key)
            channel = cmap._segmentdata[key]
            data = []
    
            for t in channel:
                data.append((1 - t[0], t[2], t[1]))
            reverse.append(sorted(data))
    
        LinearL = dict(zip(k, reverse))
        my_cmap_r = mpl.colors.LinearSegmentedColormap(name, LinearL)
        return my_cmap_r
    
    
    # ---colormap的读取和反向----
    cmap01 = Balance_20.mpl_colormap
    cmap0 = Blues_9.mpl_colormap
    cmap_r = reverse_colourmap(cmap0)
    cmap1 = GnBu_9.mpl_colormap
    cmap_r1 = reverse_colourmap(cmap1)
    cmap2 = Roma_20.mpl_colormap
    cmap_r2 = reverse_colourmap(cmap2)
    # ---read_data---
    f1 = xr.open_dataset(r'E:\data\soda\soda3.12.2_5dy_ocean_reg_2017.nc')
    print(f1)
    # # 提取经纬度(这样就不需要重复读取)
    lat = f1['yt_ocean'].data
    lon = f1['xt_ocean'].data
    ssh = f1['ssh'].data
    time = f1['time'].data
    print(time)
    # # -------- find scs 's temp-----------
    ln1 = np.where(lon >= 100)[0][0]
    ln2 = np.where(lon >= 125)[0][0]
    la1 = np.where(lat >= 0)[0][0]
    la2 = np.where(lat >= 25)[0][0]
    # # # 画图网格
    lon1 = lon[ln1:ln2]
    lat1 = lat[la1:la2]
    X, Y = np.meshgrid(lon1, lat1)
    ssh_aim = ssh[:, la1:la2, ln1:ln2]
    # # ----------对时间维度求平均 得到春夏秋冬的ssh------------------
    ssh_spr_mean = np.mean(ssh_aim[2:5, :, :], axis=0)
    ssh_sum_mean = np.mean(ssh_aim[5:8, :, :], axis=0)
    ssh_atu_mean = np.mean(ssh_aim[8:11, :, :], axis=0)
    ssh_win_mean = (ssh_aim[0, :, :]+ssh_aim[1, :, :]+ssh_aim[11, :, :])/3
    # # -------------# plot  ------------
    scale = '50m'
    plt.rcParams['font.sans-serif'] = ['Times New Roman']  # 设置整体的字体为Times New Roman
    fig = plt.figure(dpi=300, figsize=(3, 2), facecolor='w', edgecolor='blue')  # 设置一个画板,将其返还给fig
    # 通过subplots_adjust()设置间距配置
    fig.subplots_adjust(left=0.1, bottom=0.05, right=0.8, top=0.95, wspace=0.05, hspace=0.1)
    # --------第一个子图----------
    ax = fig.add_subplot(2, 2, 1, projection=ccrs.PlateCarree(central_longitude=180))
    ax.set_extent([100, 125, 0, 25], crs=ccrs.PlateCarree())  # 设置显示范围
    land = feature.NaturalEarthFeature('physical', 'land', scale, edgecolor='face',
                                       facecolor=feature.COLORS['land'])
    ax.add_feature(land, facecolor='0.6')
    ax.add_feature(feature.COASTLINE.with_scale('50m'), lw=0.3)  # 添加海岸线:关键字lw设置线宽; lifestyle设置线型
    cs = ax.contourf(X, Y, ssh_spr_mean, extend='both', cmap=cmap_r2, levels=np.linspace(0, 1, 50),
                     transform=ccrs.PlateCarree())  #
    # ------------------利用Formatter格式化刻度标签-----------------
    ax.set_xticks(np.arange(100, 126, 5), crs=ccrs.PlateCarree())  # 添加经纬度
    ax.set_xticklabels(np.arange(100, 126, 5), fontsize=4)
    ax.set_yticks(np.arange(0, 26, 5), crs=ccrs.PlateCarree())
    ax.set_yticklabels(np.arange(0, 26, 5), fontsize=4)
    ax.xaxis.set_major_formatter(LongitudeFormatter())
    ax.yaxis.set_major_formatter(LatitudeFormatter())
    ax.tick_params(axis='x', top=True, which='major', direction='in', length=2, width=0.8, labelsize=4, pad=1,
                   color='k')  # 刻度样式
    ax.tick_params(axis='y', right=True, which='major', direction='in', length=2, width=0.8, labelsize=4, pad=1,
                   color='k')  # 更改刻度指向为朝内,颜色设置为蓝色
    gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=False, xlocs=np.arange(100, 126, 5), ylocs=np.arange(0, 26, 5),
                      linewidth=0.25, linestyle='--', color='k', alpha=0.8)  # 添加网格线
    gl.top_labels, gl.bottom_labels, gl.right_labels, gl.left_labels = False, False, False, False
    
    # --------第二个子图----------
    ax = fig.add_subplot(2, 2, 2, projection=ccrs.PlateCarree(central_longitude=180))
    ax.set_extent([100, 125, 0, 25], crs=ccrs.PlateCarree())  # 设置显示范围
    land = feature.NaturalEarthFeature('physical', 'land', scale, edgecolor='face',
                                       facecolor=feature.COLORS['land'])
    ax.add_feature(land, facecolor='0.6')
    ax.add_feature(feature.COASTLINE.with_scale('50m'), lw=0.3)  # 添加海岸线:关键字lw设置线宽; lifestyle设置线型
    cs = ax.contourf(X, Y, ssh_sum_mean, extend='both', cmap=cmap_r2, levels=np.linspace(0, 1, 50),
                     transform=ccrs.PlateCarree())  #
    # ------------------利用Formatter格式化刻度标签-----------------
    ax.set_xticks(np.arange(100, 126, 5), crs=ccrs.PlateCarree())  # 添加经纬度
    ax.set_xticklabels(np.arange(100, 126, 5), fontsize=4)
    ax.set_yticks(np.arange(0, 26, 5), crs=ccrs.PlateCarree())
    ax.set_yticklabels(np.arange(0, 26, 5), fontsize=4)
    ax.xaxis.set_major_formatter(LongitudeFormatter())
    ax.yaxis.set_major_formatter(LatitudeFormatter())
    ax.tick_params(axis='x', top=True, which='major', direction='in', length=2, width=0.8, labelsize=4, pad=1,
                   color='k')  # 刻度样式
    ax.tick_params(axis='y', right=True, which='major', direction='in', length=2, width=0.8, labelsize=4, pad=1,
                   color='k')  # 更改刻度指向为朝内,颜色设置为蓝色
    gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=False, xlocs=np.arange(100, 126, 5), ylocs=np.arange(0, 26, 5),
                      linewidth=0.25, linestyle='--', color='k', alpha=0.8)  # 添加网格线
    gl.top_labels, gl.bottom_labels, gl.right_labels, gl.left_labels = False, False, False, False
    
    # --------第三个子图----------
    ax = fig.add_subplot(2, 2, 3, projection=ccrs.PlateCarree(central_longitude=180))
    ax.set_extent([100, 125, 0, 25], crs=ccrs.PlateCarree())  # 设置显示范围
    land = feature.NaturalEarthFeature('physical', 'land', scale, edgecolor='face',
                                       facecolor=feature.COLORS['land'])
    ax.add_feature(land, facecolor='0.6')
    ax.add_feature(feature.COASTLINE.with_scale('50m'), lw=0.3)  # 添加海岸线:关键字lw设置线宽; lifestyle设置线型
    cs = ax.contourf(X, Y, ssh_atu_mean, extend='both', cmap=cmap_r2, levels=np.linspace(0, 1, 50),
                     transform=ccrs.PlateCarree())  #
    # ------------------利用Formatter格式化刻度标签-----------------
    ax.set_xticks(np.arange(100, 126, 5), crs=ccrs.PlateCarree())  # 添加经纬度
    ax.set_xticklabels(np.arange(100, 126, 5), fontsize=4)
    ax.set_yticks(np.arange(0, 26, 5), crs=ccrs.PlateCarree())
    ax.set_yticklabels(np.arange(0, 26, 5), fontsize=4)
    ax.xaxis.set_major_formatter(LongitudeFormatter())
    ax.yaxis.set_major_formatter(LatitudeFormatter())
    ax.tick_params(axis='x', top=True, which='major', direction='in', length=2, width=0.8, labelsize=4, pad=1,
                   color='k')  # 刻度样式
    ax.tick_params(axis='y', right=True, which='major', direction='in', length=2, width=0.8, labelsize=4, pad=1,
                   color='k')  # 更改刻度指向为朝内,颜色设置为蓝色
    gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=False, xlocs=np.arange(100, 126, 5), ylocs=np.arange(0, 26, 5),
                      linewidth=0.25, linestyle='--', color='k', alpha=0.8)  # 添加网格线
    gl.top_labels, gl.bottom_labels, gl.right_labels, gl.left_labels = False, False, False, False
    # 添加文本注释
    
    # --------第四个子图----------
    ax = fig.add_subplot(2, 2, 4, projection=ccrs.PlateCarree(central_longitude=180))
    ax.set_extent([100, 125, 0, 25], crs=ccrs.PlateCarree())  # 设置显示范围
    land = feature.NaturalEarthFeature('physical', 'land', scale, edgecolor='face',
                                       facecolor=feature.COLORS['land'])
    ax.add_feature(land, facecolor='0.6')
    ax.add_feature(feature.COASTLINE.with_scale('50m'), lw=0.3)  # 添加海岸线:关键字lw设置线宽; lifestyle设置线型
    cs = ax.contourf(X, Y, ssh_win_mean, extend='both', cmap=cmap_r2, levels=np.linspace(0, 1, 50),
                     transform=ccrs.PlateCarree())  #
    
    # ------------------利用Formatter格式化刻度标签-----------------
    ax.set_xticks(np.arange(100, 126, 5), crs=ccrs.PlateCarree())  # 添加经纬度
    ax.set_xticklabels(np.arange(100, 126, 5), fontsize=4)
    ax.set_yticks(np.arange(0, 26, 5), crs=ccrs.PlateCarree())
    ax.set_yticklabels(np.arange(0, 26, 5), fontsize=4)
    ax.xaxis.set_major_formatter(LongitudeFormatter())
    ax.yaxis.set_major_formatter(LatitudeFormatter())
    ax.tick_params(axis='x', top=True, which='major', direction='in', length=2, width=0.8, labelsize=4, pad=1,
                   color='k')  # 刻度样式
    ax.tick_params(axis='y', right=True, which='major', direction='in', length=2, width=0.8, labelsize=4, pad=1,
                   color='k')  # 更改刻度指向为朝内,颜色设置为蓝色
    gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=False, xlocs=np.arange(100, 126, 5), ylocs=np.arange(0, 26, 5),
                      linewidth=0.25, linestyle='--', color='k', alpha=0.8)  # 添加网格线
    gl.top_labels, gl.bottom_labels, gl.right_labels, gl.left_labels = False, False, False, False
    # -------添加子图的大标题--------
    plt.suptitle("SSH", x=0.44, y=0.9965, fontsize=6, color='red')
    # ---------共用colorbar------
    cb_ax = fig.add_axes([0.82, 0.1, 0.02, 0.8]) #设置colarbar位置
    cbar = fig.colorbar(cs, cax=cb_ax, ax=ax, extend='both', orientation='vertical', ticks=[0, 0.2, 0.4, 0.6, 0.8, 1.0])     #共享colorbar
    cbar.set_label('SSH', fontsize=4, color='k')  # 设置color-bar的标签字体及其大小
    cbar.ax.tick_params(labelsize=5, direction='in', length=2, color='k')  # 设置color-bar刻度字体大小。
    plt.savefig('SSH_1.jpg', dpi=600, bbox_inches='tight', pad_inches=0.1)  # 输出地图,并设置边框空白紧密
    plt.show()
    # -----坐标轴为横-------
    # # -------------# plot  ------------
    scale = '50m'
    plt.rcParams['font.sans-serif'] = ['Times New Roman']  # 设置整体的字体为Times New Roman
    fig = plt.figure(dpi=300, figsize=(3, 2), facecolor='w', edgecolor='blue')  # 设置一个画板,将其返还给fig
    # 通过subplots_adjust()设置间距配置
    fig.subplots_adjust(left=0.1, bottom=0.1, right=0.8, top=0.95, wspace=0.05, hspace=0.1)
    # --------第一个子图----------
    ax = fig.add_subplot(2, 2, 1, projection=ccrs.PlateCarree(central_longitude=180))
    ax.set_extent([100, 125, 0, 25], crs=ccrs.PlateCarree())  # 设置显示范围
    land = feature.NaturalEarthFeature('physical', 'land', scale, edgecolor='face',
                                       facecolor=feature.COLORS['land'])
    ax.add_feature(land, facecolor='0.6')
    ax.add_feature(feature.COASTLINE.with_scale('50m'), lw=0.3)  # 添加海岸线:关键字lw设置线宽; lifestyle设置线型
    cs = ax.contourf(X, Y, ssh_spr_mean, extend='both', cmap=cmap_r2, levels=np.linspace(0, 1, 50),
                     transform=ccrs.PlateCarree())  #
    # ------------------利用Formatter格式化刻度标签-----------------
    ax.set_xticks(np.arange(100, 126, 5), crs=ccrs.PlateCarree())  # 添加经纬度
    ax.set_xticklabels(np.arange(100, 126, 5), fontsize=4)
    ax.set_yticks(np.arange(0, 26, 5), crs=ccrs.PlateCarree())
    ax.set_yticklabels(np.arange(0, 26, 5), fontsize=4)
    ax.xaxis.set_major_formatter(LongitudeFormatter())
    ax.yaxis.set_major_formatter(LatitudeFormatter())
    ax.tick_params(axis='x', top=True, which='major', direction='in', length=2, width=0.8, labelsize=4, pad=1,
                   color='k')  # 刻度样式
    ax.tick_params(axis='y', right=True, which='major', direction='in', length=2, width=0.8, labelsize=4, pad=1,
                   color='k')  # 更改刻度指向为朝内,颜色设置为蓝色
    gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=False, xlocs=np.arange(100, 126, 5), ylocs=np.arange(0, 26, 5),
                      linewidth=0.25, linestyle='--', color='k', alpha=0.8)  # 添加网格线
    gl.top_labels, gl.bottom_labels, gl.right_labels, gl.left_labels = False, False, False, False
    
    # --------第二个子图----------
    ax = fig.add_subplot(2, 2, 2, projection=ccrs.PlateCarree(central_longitude=180))
    ax.set_extent([100, 125, 0, 25], crs=ccrs.PlateCarree())  # 设置显示范围
    land = feature.NaturalEarthFeature('physical', 'land', scale, edgecolor='face',
                                       facecolor=feature.COLORS['land'])
    ax.add_feature(land, facecolor='0.6')
    ax.add_feature(feature.COASTLINE.with_scale('50m'), lw=0.3)  # 添加海岸线:关键字lw设置线宽; lifestyle设置线型
    cs = ax.contourf(X, Y, ssh_sum_mean, extend='both', cmap=cmap_r2, levels=np.linspace(0, 1, 50),
                     transform=ccrs.PlateCarree())  #
    # ------------------利用Formatter格式化刻度标签-----------------
    ax.set_xticks(np.arange(100, 126, 5), crs=ccrs.PlateCarree())  # 添加经纬度
    ax.set_xticklabels(np.arange(100, 126, 5), fontsize=4)
    ax.set_yticks(np.arange(0, 26, 5), crs=ccrs.PlateCarree())
    ax.set_yticklabels(np.arange(0, 26, 5), fontsize=4)
    ax.xaxis.set_major_formatter(LongitudeFormatter())
    ax.yaxis.set_major_formatter(LatitudeFormatter())
    ax.tick_params(axis='x', top=True, which='major', direction='in', length=2, width=0.8, labelsize=4, pad=1,
                   color='k')  # 刻度样式
    ax.tick_params(axis='y', right=True, which='major', direction='in', length=2, width=0.8, labelsize=4, pad=1,
                   color='k')  # 更改刻度指向为朝内,颜色设置为蓝色
    gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=False, xlocs=np.arange(100, 126, 5), ylocs=np.arange(0, 26, 5),
                      linewidth=0.25, linestyle='--', color='k', alpha=0.8)  # 添加网格线
    gl.top_labels, gl.bottom_labels, gl.right_labels, gl.left_labels = False, False, False, False
    
    # --------第三个子图----------
    ax = fig.add_subplot(2, 2, 3, projection=ccrs.PlateCarree(central_longitude=180))
    ax.set_extent([100, 125, 0, 25], crs=ccrs.PlateCarree())  # 设置显示范围
    land = feature.NaturalEarthFeature('physical', 'land', scale, edgecolor='face',
                                       facecolor=feature.COLORS['land'])
    ax.add_feature(land, facecolor='0.6')
    ax.add_feature(feature.COASTLINE.with_scale('50m'), lw=0.3)  # 添加海岸线:关键字lw设置线宽; lifestyle设置线型
    cs = ax.contourf(X, Y, ssh_atu_mean, extend='both', cmap=cmap_r2, levels=np.linspace(0, 1, 50),
                     transform=ccrs.PlateCarree())  #
    # ------------------利用Formatter格式化刻度标签-----------------
    ax.set_xticks(np.arange(100, 126, 5), crs=ccrs.PlateCarree())  # 添加经纬度
    ax.set_xticklabels(np.arange(100, 126, 5), fontsize=4)
    ax.set_yticks(np.arange(0, 26, 5), crs=ccrs.PlateCarree())
    ax.set_yticklabels(np.arange(0, 26, 5), fontsize=4)
    ax.xaxis.set_major_formatter(LongitudeFormatter())
    ax.yaxis.set_major_formatter(LatitudeFormatter())
    ax.tick_params(axis='x', top=True, which='major', direction='in', length=2, width=0.8, labelsize=4, pad=1,
                   color='k')  # 刻度样式
    ax.tick_params(axis='y', right=True, which='major', direction='in', length=2, width=0.8, labelsize=4, pad=1,
                   color='k')  # 更改刻度指向为朝内,颜色设置为蓝色
    gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=False, xlocs=np.arange(100, 126, 5), ylocs=np.arange(0, 26, 5),
                      linewidth=0.25, linestyle='--', color='k', alpha=0.8)  # 添加网格线
    gl.top_labels, gl.bottom_labels, gl.right_labels, gl.left_labels = False, False, False, False
    
    
    # --------第四个子图----------
    ax = fig.add_subplot(2, 2, 4, projection=ccrs.PlateCarree(central_longitude=180))
    ax.set_extent([100, 125, 0, 25], crs=ccrs.PlateCarree())  # 设置显示范围
    land = feature.NaturalEarthFeature('physical', 'land', scale, edgecolor='face',
                                       facecolor=feature.COLORS['land'])
    ax.add_feature(land, facecolor='0.6')
    ax.add_feature(feature.COASTLINE.with_scale('50m'), lw=0.3)  # 添加海岸线:关键字lw设置线宽; lifestyle设置线型
    cs = ax.contourf(X, Y, ssh_win_mean, extend='both', cmap=cmap_r2, levels=np.linspace(0, 1, 50),
                     transform=ccrs.PlateCarree())  #
    
    # ------------------利用Formatter格式化刻度标签-----------------
    ax.set_xticks(np.arange(100, 126, 5), crs=ccrs.PlateCarree())  # 添加经纬度
    ax.set_xticklabels(np.arange(100, 126, 5), fontsize=4)
    ax.set_yticks(np.arange(0, 26, 5), crs=ccrs.PlateCarree())
    ax.set_yticklabels(np.arange(0, 26, 5), fontsize=4)
    ax.xaxis.set_major_formatter(LongitudeFormatter())
    ax.yaxis.set_major_formatter(LatitudeFormatter())
    ax.tick_params(axis='x', top=True, which='major', direction='in', length=2, width=0.8, labelsize=4, pad=1,
                   color='k')  # 刻度样式
    ax.tick_params(axis='y', right=True, which='major', direction='in', length=2, width=0.8, labelsize=4, pad=1,
                   color='k')  # 更改刻度指向为朝内,颜色设置为蓝色
    gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=False, xlocs=np.arange(100, 126, 5), ylocs=np.arange(0, 26, 5),
                      linewidth=0.25, linestyle='--', color='k', alpha=0.8)  # 添加网格线
    gl.top_labels, gl.bottom_labels, gl.right_labels, gl.left_labels = False, False, False, False
    # -------添加子图的大标题--------
    plt.suptitle("SSH", x=0.44, y=0.9965, fontsize=6, color='red')
    # ---------共用colorbar------
    cb_ax = fig.add_axes([0.15, 0.02, 0.6, 0.03]) #设置colarbar位置
    cbar = fig.colorbar(cs, cax=cb_ax, ax=ax, extend='both', orientation='horizontal', ticks=[0, 0.2, 0.4, 0.6, 0.8, 1.0])     #共享colorbar
    cbar.set_label('SSH', fontsize=4, color='k')  # 设置color-bar的标签字体及其大小
    cbar.ax.tick_params(labelsize=5, direction='in', length=2, color='k')  # 设置color-bar刻度字体大小。
    plt.savefig('SSH_1.jpg', dpi=600, bbox_inches='tight', pad_inches=0.1)  # 输出地图,并设置边框空白紧密
    plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226
    • 227
    • 228
    • 229
    • 230
    • 231
    • 232
    • 233
    • 234
    • 235
    • 236
    • 237
    • 238
    • 239
    • 240
    • 241
    • 242
    • 243
    • 244
    • 245
    • 246
    • 247
    • 248
    • 249
    • 250
    • 251
    • 252
    • 253
    • 254
    • 255
    • 256
    • 257
    • 258
    • 259
    • 260
    • 261
    • 262
    • 263
    • 264
    • 265
    • 266
    • 267
    • 268
    • 269
    • 270
    • 271
    • 272
    • 273
    • 274
    • 275
    • 276
    • 277
    • 278
    • 279
    • 280
    • 281
    • 282
    • 283
    • 284
    • 285
    • 286
    • 287
    • 288
    • 289
    • 290
    • 291
    • 292
    • 293
    • 294
    • 295
    • 296
    • 297
    • 298
    • 299
    • 300
    • 301
    • 302
    • 303
    • 304
    • 305
    • 306
    • 307
    • 308
  • 相关阅读:
    React UI组件库——如何快速实现antd的按需引入和自定义主题
    spring支持哪几种bean的作用域呢?
    数据脱敏的功能与技术原理【详解】
    (9)YOLO-Pose:使用对象关键点相似性损失增强多人姿态估计的增强版YOLO
    excel转换成pdf格式怎么操作?这3招教你Excel怎么转PDF
    gitlab的使用方法,详解gitlab操作
    深度学习入门:基于Python的理论与实现
    Web前端vueDemo—实现天气预报功能(四)
    模式识别 1.距离分类器
    制作一个简单HTML电影网页设计(HTML+CSS)
  • 原文地址:https://blog.csdn.net/miaobo0/article/details/133821485