• Python:如何在一个月内学会爬取大规模数据


    img

    Python爬虫为什么受欢迎

    如果你仔细观察,就不难发现,懂爬虫、学习爬虫的人越来越多,一方面,互联网可以获取的数据越来越多,另一方面,像 Python这样的编程语言提供越来越多的优秀工具,让爬虫变得简单、容易上手。

    利用爬虫我们可以获取大量的价值数据,从而获得感性认识中不能得到的信息,比如:

    **知乎:**爬取优质答案,为你筛选出各话题下最优质的内容。 **淘宝、京东:**抓取商品、评论及销量数据,对各种商品及用户的消费场景进行分析。 安居客、链家:抓取房产买卖及租售信息,分析房价变化趋势、做不同区域的房价分析。 **拉勾网、智联:**爬取各类职位信息,分析各行业人才需求情况及薪资水平。 **雪球网:**抓取雪球高回报用户的行为,对股票市场进行分析和预测。

    **爬虫是入门Python最好的方式,没有之一。**Python有很多应用的方向,比如后台开发、web开发、科学计算等等,但爬虫对于初学者而言更友好,原理简单,几行代码就能实现基本的爬虫,学习的过程更加平滑,你能体会更大的成就感。

    掌握基本的爬虫后,你再去学习Python数据分析、web开发甚至机器学习,都会更得心应手。因为这个过程中,Python基本语法、库的使用,以及如何查找文档你都非常熟悉了。

    对于小白来说,爬虫可能是一件非常复杂、技术门槛很高的事情。比如有人认为学爬虫必须精通 Python,然后哼哧哼哧系统学习 Python 的每个知识点,很久之后发现仍然爬不了数据;有的人则认为先要掌握网页的知识,遂开始 HTML\CSS,结果入了前端的坑,瘁……

    但掌握正确的方法,在短时间内做到能够爬取主流网站的数据,其实非常容易实现,但建议你从一开始就要有一个具体的目标。

    在目标的驱动下,你的学习才会更加精准和高效。**那些所有你认为必须的前置知识,都是可以在完成目标的过程中学到的。**这里给你一条平滑的、零基础快速入门的学习路径。

    1.学习 Python 包并实现基本的爬虫过程 2.了解非结构化数据的存储 3.学习scrapy,搭建工程化爬虫 4.学习数据库知识,应对大规模数据存储与提取 5.掌握各种技巧,应对特殊网站的反爬措施 6.分布式爬虫,实现大规模并发采集,提升效率

    - ❶ -

    学习 Python 包并实现基本的爬虫过程

    大部分爬虫都是按**“发送请求——获得页面——解析页面——抽取并储存内容”**这样的流程来进行,这其实也是模拟了我们使用浏览器获取网页信息的过程。

    Python中爬虫相关的包很多:urllib、requests、bs4、scrapy、pyspider 等,建议从requests+Xpath 开始,requests 负责连接网站,返回网页,Xpath 用于解析网页,便于抽取数据。

    如果你用过 BeautifulSoup,会发现 Xpath 要省事不少,一层一层检查元素代码的工作,全都省略了。这样下来基本套路都差不多,一般的静态网站根本不在话下,豆瓣、糗事百科、腾讯新闻等基本上都可以上手了

    当然如果你需要爬取异步加载的网站,可以学习浏览器抓包分析真实请求或者学习Selenium来实现自动化,这样,知乎、时光网、猫途鹰这些动态的网站也可以迎刃而解

    - ❷ -

    了解非结构化数据的存储

    爬回来的数据可以直接用文档形式存在本地,也可以存入数据库中。

    开始数据量不大的时候,你可以直接通过 Python 的语法或 pandas 的方法将数据存为csv这样的文件

    当然你可能发现爬回来的数据并不是干净的,可能会有缺失、错误等等,你还需要对数据进行清洗,可以学习 pandas 包的基本用法来做数据的预处理,得到更干净的数据。

    - ❸ -

    学习 scrapy,搭建工程化的爬虫

    掌握前面的技术一般量级的数据和代码基本没有问题了,但是在遇到非常复杂的情况,可能仍然会力不从心,这个时候,强大的 scrapy 框架就非常有用了。

    scrapy 是一个功能非常强大的爬虫框架,它不仅能便捷地构建request,还有强大的 selector 能够方便地解析 response,然而它最让人惊喜的还是它超高的性能,让你可以将爬虫工程化、模块化。

    学会 scrapy,你可以自己去搭建一些爬虫框架,你就基本具备爬虫工程师的思维了。

    - ❹ -

    学习数据库基础,应对大规模数据存储

    爬回来的数据量小的时候,你可以用文档的形式来存储,一旦数据量大了,这就有点行不通了。所以掌握一种数据库是必须的,学习目前比较主流的 MongoDB 就OK。

    **MongoDB 可以方便你去存储一些非结构化的数据,比如各种评论的文本,图片的链接等等。**你也可以利用PyMongo,更方便地在Python中操作MongoDB。

    因为这里要用到的数据库知识其实非常简单,主要是数据如何入库、如何进行提取,在需要的时候再学习就行。

    - ❺ -

    掌握各种技巧,应对特殊网站的反爬措施

    当然,爬虫过程中也会经历一些绝望啊,比如被网站封IP、比如各种奇怪的验证码、userAgent访问限制、各种动态加载等等。

    遇到这些反爬虫的手段,当然还需要一些高级的技巧来应对,常规的比如访问频率控制、使用代理IP池、抓包、验证码的OCR处理等等

    往往网站在高效开发和反爬虫之间会偏向前者,这也为爬虫提供了空间,掌握这些应对反爬虫的技巧,绝大部分的网站已经难不到你了

    - ❻ -

    分布式爬虫,实现大规模并发采集

    爬取基本数据已经不是问题了,你的瓶颈会集中到爬取海量数据的效率。这个时候,相信你会很自然地接触到一个很厉害的名字:分布式爬虫

    分布式这个东西,听起来很恐怖,但其实就是利用多线程的原理让多个爬虫同时工作,需要你掌握 Scrapy + MongoDB + Redis 这三种工具

    Scrapy 前面我们说过了,用于做基本的页面爬取,MongoDB 用于存储爬取的数据,Redis 则用来存储要爬取的网页队列,也就是任务队列。

    所以有些东西看起来很吓人,但其实分解开来,也不过如此。当你能够写分布式的爬虫的时候,那么你可以去尝试打造一些基本的爬虫架构了,实现一些更加自动化的数据获取。

    你看,这一条学习路径下来,你已然可以成为老司机了,非常的顺畅。所以在一开始的时候,尽量不要系统地去啃一些东西,找一个实际的项目(开始可以从豆瓣、小猪这种简单的入手),直接开始就好

    因为爬虫这种技术,既不需要你系统地精通一门语言,也不需要多么高深的数据库技术,高效的姿势就是从实际的项目中去学习这些零散的知识点,你能保证每次学到的都是最需要的那部分。

    当然唯一麻烦的是,在具体的问题中,如何找到具体需要的那部分学习资源、如何筛选和甄别,是很多初学者面临的一个大问题。

    不过不用担心,我们准备了一门非常系统的爬虫课程,除了为你提供一条清晰的学习路径,我们甄选了最实用的学习资源以及庞大的主流爬虫案例库。短时间的学习,你就能够很好地掌握爬虫这个技能,获取你想得到的数据。

    1)Python所有方向的学习路线(新版)

    总结的Python爬虫和数据分析等各个方向应该学习的技术栈。

    在这里插入图片描述

    比如说爬虫这一块,很多人以为学了xpath和PyQuery等几个解析库之后就精通的python爬虫,其实路还有很长,比如说移动端爬虫和JS逆向等等。

    img

    (2)Python学习视频

    包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然达不到大佬的程度,但是精通python是没有问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。

    在这里插入图片描述

    (3)100多个练手项目

    我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。

    在这里插入图片描述

  • 相关阅读:
    这样回答前端面试题才能拿到offer
    来啦来啦|开源 * 安全 * 赋能 - .NET Conf China 2022
    基于java的图书馆座位系统的设计与实现
    leetcode-547:省份数量
    数据科学必备Python编程基础
    2 SpringMVC之入门案例
    orcal创建索引
    GaN HEMT 电容的分析建模,包括寄生元件
    正则表达式使用文档
    zero-shot, one-shot和few-shot
  • 原文地址:https://blog.csdn.net/javasdn/article/details/133771732