LeNet是CNN结构的开山鼻祖,第一次定义了卷积神经网络的结构。
LeNet模型包含了多个卷积层和池化层,以及最后的全连接层用于分类。其中,每个卷积层都包含了一个卷积操作和一个非线性激活函数,用于提取输入图像的特征。池化层则用于缩小特征图的尺寸,减少模型参数和计算量。全连接层则将特征向量映射到类别概率上。
LeNet 的特点如下所示:
(1)定义了卷积神经网络(Convolutional Neural Network, CNN)的基本框架:卷积层+池化层(Pooling Layer)+全连接层;
(2)定义了卷积层(Convolution Layer),与全连接层相比,卷积层的不同之处有两点:局部连接(引进“感受野”这一概念)、权值共享(减少参数数量),卷积计算公式:
(3)利用池化层进行下采样(Downsampooling),从而减少计算量,池化计算公式:
(4)用tanh作为非线性激活函数(现在看到的都是改进过的LeNet了,用ReLu代替 tanh。相较于sigmoid,tanh以原点对称(zero-centered),收敛速度会快。
- import tensorflow as tf
-
- def lenet_model():
- inputs = tf.placeholder(tf.float32, shape=[None, 28, 28, 1])
- conv1 = tf.layers.conv2d(inputs=inputs, filters=6, kernel_size=(5, 5), strides=(1, 1), padding='valid', activation=tf.nn.relu)
- pool1 = tf.layers.max_pooling2d(conv1, (2, 2), strides=(2, 2))
- conv2 = tf.layers.conv2d(inputs=pool1, filters=16, kernel_size=(5, 5), strides=(1, 1), padding='valid', activation=tf.nn.relu)
- pool2 = tf.layers.max_pooling2d(conv2, (2, 2), strides=(2, 2))
- flatten = tf.layers.flatten(pool2)
- dense1 = tf.layers.dense(flatten, 120, activation=tf.nn.relu)
- dense2 = tf.layers.dense(dense1, 84, activation=tf.nn.relu)
- logits = tf.layers.dense(dense2, 10)
- return inputs, logits