
dp[i][j] = dp[i - 1][j - 1]dp[i][j] = min(dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1)dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1)
和1143.最长公共子序列 基本相同,只要求出两个字符串的最长公共子序列长度即可,那么除了最长公共子序列之外的字符都是必须删除的,最后用两个字符串的总长度减去两个最长公共子序列的长度就是删除的最少步数。
思路一
class Solution:
def minDistance(self, word1: str, word2: str) -> int:
dp = [[0] * (len(word1) + 1) for _ in range(len(word2) + 1)]
for i in range(len(word2) + 1):
dp[i][0] = i
for j in range(len(word1) + 1):
dp[0][j] = j
for i in range(1, len(word2) + 1):
for j in range(1, len(word1) + 1):
if word1[j - 1] == word2[i - 1]:
dp[i][j] = dp[i - 1][j - 1]
else:
dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1)
return dp[-1][-1]
O(n * m)O(n * m)
dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]。if (word1[i - 1] == word2[j - 1])
不操作
if (word1[i - 1] != word2[j - 1])
增
删
换
dp[i][j] = dp[i - 1][j - 1]dp[i][j] = dp[i - 1][j ] + 1dp[i][j] = dp[i][j - 1] + 1dp[i][j] = dp[i - 1][j - 1] + 1dp[i][0] = i,同理dp[0][j] = j。

class Solution:
def minDistance(self, word1: str, word2: str) -> int:
dp = [[0] * (len(word1) + 1) for _ in range(len(word2) + 1)]
for i in range(len(word2) + 1):
dp[i][0] = i
for j in range(len(word1) + 1):
dp[0][j] = j
for i in range(1, len(word2) + 1):
for j in range(1, len(word1) + 1):
if word2[i - 1] == word1[j - 1]:
dp[i][j] = dp[i - 1][j - 1]
else:
dp[i][j] = min(dp[i - 1][j], dp[i - 1][j - 1], dp[i][j - 1]) + 1
return dp[-1][-1]
O(n * m)O(n * m)