map 用法
map
map 模拟
#pragma once
#include
namespace sjy
{
enum Color
{
RED,
BLACK
};
template <typename T>
struct RBTreeNode
{
RBTreeNode(const T& data = T())
:_left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _data(data)
, _col(RED)
{}
RBTreeNode<T>* _left;
RBTreeNode<T>* _right;
RBTreeNode<T>* _parent;
T _data;
Color _col;
};
template <typename T, typename Ref, typename Ptr>
struct __TreeIterator
{
typedef RBTreeNode<T> Node;
typedef __TreeIterator<T, Ref, Ptr> self;
__TreeIterator(Node* node)
:_node(node)
{}
self& operator++()
{
if (_node->_right == nullptr)
{
Node* cur = _node;
Node* parent = cur->_parent;
while (parent != nullptr)
{
if (parent->_left == cur)
{
_node = parent;
break;
}
else
{
cur = parent;
parent = parent->_parent;
}
}
}
else if (_node->_right->_right != _node)
{
Node* cur = _node->_right;
while (cur->_left != nullptr)
{
cur = cur->_left;
}
_node = cur;
}
else
{
_node = _node->_right;
}
return *this;
}
self& operator--()
{
if (_node->_left == nullptr)
{
Node* cur = _node;
Node* parent = cur->_parent;
while (parent != nullptr)
{
if (parent->_right == cur)
{
_node = parent;
break;
}
else
{
cur = parent;
parent = parent->_parent;
}
}
}
else if (_node->_left->_left != _node)
{
Node* cur = _node->_left;
while (cur->_right != nullptr)
{
cur = cur->_right;
}
_node = cur;
}
else
{
_node = _node->_left;
}
return *this;
}
Ref operator*()
{
return _node->_data;
}
Ptr operator->()
{
return &(_node->_data);
}
bool operator==(const self& other)
{
return _node == other._node;
}
bool operator!=(const self& other)
{
return _node != other._node;
}
Node* _node;
};
template <typename K, typename T, typename KeyOfT>
class RBTree
{
typedef RBTreeNode<T> Node;
public:
RBTree()
:_root(nullptr)
, _header()
, _size(0)
{}
~RBTree()
{
clear();
}
typedef __TreeIterator<T, T&, T*> iterator;
typedef __TreeIterator<T, const T&, const T*> const_iterator;
iterator begin()
{
return _header._left;
}
iterator end()
{
return &_header;
}
const_iterator begin() const
{
return _root;
}
const_iterator end() const
{
return &_header;
}
void RotateL(Node* parent)
{
Node* cur = parent->_right;
Node* grandparent = parent->_parent;
if (parent == _root)
{
_root = cur;
}
else
{
if (grandparent->_left == parent)
{
grandparent->_left = cur;
}
else
{
grandparent->_right = cur;
}
}
if (cur->_left != nullptr)
{
cur->_left->_parent = parent;
}
parent->_parent = cur;
parent->_right = cur->_left;
cur->_left = parent;
cur->_parent = grandparent;
}
void RotateR(Node* parent)
{
Node* cur = parent->_left;
Node* grandparent = parent->_parent;
if (parent == _root)
{
_root = cur;
}
else
{
if (grandparent->_left == parent)
{
grandparent->_left = cur;
}
else
{
grandparent->_right = cur;
}
}
if (cur->_right != nullptr)
{
cur->_right->_parent = parent;
}
parent->_parent = cur;
parent->_left = cur->_right;
cur->_parent = grandparent;
cur->_right = parent;
}
void RotateLR(Node* parent)
{
Node* cur = parent->_left;
RotateL(cur);
RotateR(parent);
}
void RotateRL(Node* parent)
{
Node* cur = parent->_right;
RotateR(cur);
RotateL(parent);
}
pair<iterator, bool> Insert(const T& data)
{
HeaderFadeAway();
if (_root == nullptr)
{
_root = new Node(data);
_root->_col = BLACK;
_size++;
HeaderComeBack();
return make_pair(_root, true);
}
Node* cur = _root;
Node* parent = nullptr;
KeyOfT kot;
while (cur != nullptr)
{
if (kot(data) < kot(cur->_data))
{
parent = cur;
cur = cur->_left;
}
else if (kot(data) > kot(cur->_data))
{
parent = cur;
cur = cur->_right;
}
else
{
HeaderComeBack();
return make_pair(cur, false);
}
}
Node* newnode = new Node(data);
cur = newnode;
if (kot(data) < kot(parent->_data))
{
newnode->_parent = parent;
parent->_left = newnode;
}
else if (kot(data) > kot(parent->_data))
{
newnode->_parent = parent;
parent->_right = newnode;
}
while (parent != nullptr)
{
Node* grandparent = parent->_parent;
if (grandparent == nullptr)
{
parent->_col = BLACK;
_root = parent;
break;
}
else if (parent->_col == BLACK)
{
break;
}
else if (parent->_col == RED)
{
if (grandparent->_left == parent && grandparent->_right == nullptr)
{
if (parent->_left == cur)
{
RotateR(grandparent);
parent->_col = RED;
grandparent->_col = BLACK;
cur->_col = BLACK;
cur = parent;
parent = parent->_parent;
}
else
{
RotateLR(grandparent);
cur->_col = RED;
grandparent->_col = BLACK;
parent->_col = BLACK;
parent = cur->_parent;
}
}
else if (grandparent->_right == parent && grandparent->_left == nullptr)
{
if (parent->_left == cur)
{
RotateRL(grandparent);
cur->_col = RED;
grandparent->_col = BLACK;
parent->_col = BLACK;
parent = cur->_parent;
}
else
{
RotateL(grandparent);
parent->_col = RED;
grandparent->_col = BLACK;
cur->_col = BLACK;
cur = parent;
parent = parent->_parent;
}
}
else if (grandparent->_left->_col == RED && grandparent->_right->_col == RED)
{
grandparent->_col = RED;
grandparent->_left->_col = BLACK;
grandparent->_right->_col = BLACK;
cur = grandparent;
parent = grandparent->_parent;
}
else if (grandparent->_left == parent && grandparent->_right->_col == BLACK)
{
if (parent->_left == cur)
{
RotateR(grandparent);
parent->_col = BLACK;
grandparent->_col = RED;
}
else
{
RotateLR(grandparent);
cur->_col = BLACK;
grandparent->_col = RED;
}
break;
}
else if (grandparent->_right == parent && grandparent->_left->_col == BLACK)
{
if (parent->_left == cur)
{
RotateRL(grandparent);
cur->_col = BLACK;
grandparent->_col = RED;
}
else
{
RotateL(grandparent);
parent->_col = BLACK;
grandparent->_col = RED;
}
break;
}
}
}
if (_root->_col == RED)
{
_root->_col = BLACK;
}
_size++;
HeaderComeBack();
return make_pair(newnode, true);
}
void HeaderFadeAway()
{
if (_header._left != nullptr)
{
(_header._left)->_left = nullptr;
}
if (_header._right != nullptr)
{
(_header._right)->_right = nullptr;
}
_header._left = nullptr;
_header._right = nullptr;
}
void HeaderComeBack()
{
if (_root == nullptr)
{
_header._left = nullptr;
_header._right = nullptr;
}
else
{
Node* leftmin = _root;
Node* rightmax = _root;
while (leftmin->_left != nullptr)
{
leftmin = leftmin->_left;
}
while (rightmax->_right != nullptr)
{
rightmax = rightmax->_right;
}
_header._left = leftmin;
_header._right = rightmax;
leftmin->_left = &_header;
rightmax->_right = &_header;
}
}
iterator Find(const K& key)
{
if (empty())
{
return end();
}
else
{
KeyOfT kot;
Node* cur = _root;
while (cur != nullptr && cur != &_header)
{
if (kot(cur->_data) == key)
{
return cur;
}
else if (kot(cur->_data) > key)
{
cur = cur->_left;
}
else if (kot(cur->_data) < key)
{
cur = cur->_right;
}
}
return end();
}
}
size_t size() const
{
return _size;
}
bool empty() const
{
return _size == 0;
}
void clear()
{
_clear(_root);
}
private:
void _clear(Node* root)
{
if (root == nullptr || root == &_header)
{
return;
}
_clear(root->_left);
_clear(root->_right);
delete root;
_size--;
_root = nullptr;
_header._left = _header._right = nullptr;
}
Node* _root;
Node _header;
size_t _size;
};
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
- 274
- 275
- 276
- 277
- 278
- 279
- 280
- 281
- 282
- 283
- 284
- 285
- 286
- 287
- 288
- 289
- 290
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
- 300
- 301
- 302
- 303
- 304
- 305
- 306
- 307
- 308
- 309
- 310
- 311
- 312
- 313
- 314
- 315
- 316
- 317
- 318
- 319
- 320
- 321
- 322
- 323
- 324
- 325
- 326
- 327
- 328
- 329
- 330
- 331
- 332
- 333
- 334
- 335
- 336
- 337
- 338
- 339
- 340
- 341
- 342
- 343
- 344
- 345
- 346
- 347
- 348
- 349
- 350
- 351
- 352
- 353
- 354
- 355
- 356
- 357
- 358
- 359
- 360
- 361
- 362
- 363
- 364
- 365
- 366
- 367
- 368
- 369
- 370
- 371
- 372
- 373
- 374
- 375
- 376
- 377
- 378
- 379
- 380
- 381
- 382
- 383
- 384
- 385
- 386
- 387
- 388
- 389
- 390
- 391
- 392
- 393
- 394
- 395
- 396
- 397
- 398
- 399
- 400
- 401
- 402
- 403
- 404
- 405
- 406
- 407
- 408
- 409
- 410
- 411
- 412
- 413
- 414
- 415
- 416
- 417
- 418
- 419
- 420
- 421
- 422
- 423
- 424
- 425
- 426
- 427
- 428
- 429
- 430
- 431
- 432
- 433
- 434
- 435
- 436
- 437
- 438
- 439
- 440
- 441
- 442
- 443
- 444
- 445
- 446
- 447
- 448
- 449
- 450
- 451
- 452
- 453
- 454
- 455
- 456
- 457
- 458
- 459
- 460
- 461
- 462
- 463
- 464
- 465
- 466
- 467
- 468
- 469
- 470
- 471
- 472
- 473
- 474
- 475
- 476
- 477
- 478
- 479
- 480
- 481
- 482
- 483
- 484
- 485
- 486
- 487
- 488
- 489
- 490
- 491
- 492
- 493
- 494
- 495
- 496
- 497
- 498
- 499
- 500
- 501
- 502
- 503
- 504
#pragma once
#include "RBTree.h"
namespace sjy
{
template <typename K, typename V>
class map
{
struct MapKeyOfT
{
const K& operator()(const pair<K, V>& kv)
{
return kv.first;
}
};
public:
typename typedef RBTree<K, pair<K, V>, MapKeyOfT>::iterator iterator;
typename typedef RBTree<K, pair<K, V>, MapKeyOfT>::const_iterator const_iterator;
iterator begin()
{
return _tree.begin();
}
iterator end()
{
return _tree.end();
}
const_iterator begin() const
{
return _tree.begin();
}
const_iterator end() const
{
return _tree.end();
}
pair<iterator, bool> Insert(const pair<K, V>& kv)
{
return _tree.Insert(kv);
}
iterator Find(const K& key)
{
return _tree.Find(key);
}
size_t size() const
{
return _tree.size();
}
bool empty() const
{
return _tree.empty();
}
void clear()
{
_tree.clear();
}
V& operator[](const K& key)
{
iterator it = Find(key);
if (it == end())
{
return (*(Insert(make_pair(key, V())).first)).second;
}
else
{
return (*it).second;
}
}
private:
RBTree<K, pair<K, V>, MapKeyOfT> _tree;
};
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76