• Flink状态管理与检查点机制


    本专栏案例代码和数据集链接:  https://download.csdn.net/download/shangjg03/88477960

    1.状态分类

    相对于其他流计算框架,Flink 一个比较重要的特性就是其支持有状态计算。即你可以将中间的计算结果进行保存,并提供给后续的计算使用:

    具体而言,Flink 又将状态 (State) 分为 Keyed State 与 Operator State:

    1.1 算子状态

    算子状态 (Operator State):顾名思义,状态是和算子进行绑定的,一个算子的状态不能被其他算子所访问到。官方文档上对 Operator State 的解释是:each operator state is bound to one parallel operator instance,所以更为确切的说一个算子状态是与一个并发的算子实例所绑定的,即假设算子的并行度是 2,那么其应有两个对应的算子状态:

    2.2 键控状态

    键控状态 (Keyed State) :是一种特殊的算子状态,即状态是根据 key 值进行区分的,Flink 会为每类键值维护一个状态实例。如下图所示,每个颜色代表不同 key 值,对应四个不同的状态实例。需要注意的是键控状态只能在 KeyedStream 上进行使用,我们可以通过 stream.keyBy(...) 来得到 KeyedStream 。

    2.状态编程

    2.1 键控状态

    Flink 提供了以下数据格式来管理和存储键控状态 (Keyed State):

    • ValueState:存储单值类型的状态。可以使用  update(T) 进行更新,并通过 T value() 进行检索。 
    • ListState:存储列表类型的状态。可以使用 add(T) 或 addAll(List) 添加元素;并通过 get() 获得整个列表。
    • ReducingState:用于存储经过 ReduceFunction 计算后的结果,使用 add(T) 增加元素。
    • AggregatingState:用于存储经过 AggregatingState 计算后的结果,使用 add(IN) 添加元素。
    • FoldingState:已被标识为废弃,会在未来版本中移除,官方推荐使用 AggregatingState 代替。
    • MapState:维护 Map 类型的状态。

    以上所有增删改查方法不必硬记,在使用时通过语法提示来调用即可。这里给出一个具体的使用示例:假设我们正在开发一个监控系统,当监控数据超过阈值一定次数后,需要发出报警信息。这里之所以要达到一定次数,是因为由于偶发原因,偶尔一次超过阈值并不能代表什么,故需要达到一定次数后才触发报警,这就需要使用到 Flink 的状态编程。相关代码如下:

    1. public class ThresholdWarning extends
    2. RichFlatMapFunction<Tuple2<String, Long>, Tuple2<String, List<Long>>> {
    3. // 通过ListState来存储非正常数据的状态
    4. private transient ListState<Long> abnormalData;
    5. // 需要监控的阈值
    6. private Long threshold;
    7. // 触发报警的次数
    8. private Integer numberOfTimes;
    9. ThresholdWarning(Long threshold, Integer numberOfTimes) {
    10. this.threshold = threshold;
    11. this.numberOfTimes = numberOfTimes;
    12. }
    13. @Override
    14. public void open(Configuration parameters) {
    15. // 通过状态名称(句柄)获取状态实例,如果不存在则会自动创建
    16. abnormalData = getRuntimeContext().getListState(
    17. new ListStateDescriptor<>("abnormalData", Long.class));
    18. }
    19. @Override
    20. public void flatMap(Tuple2<String, Long> value, Collector<Tuple2<String, List<Long>>> out)
    21. throws Exception {
    22. Long inputValue = value.f1;
    23. // 如果输入值超过阈值,则记录该次不正常的数据信息
    24. if (inputValue >= threshold) {
    25. abnormalData.add(inputValue);
    26. }
    27. ArrayList<Long> list = Lists.newArrayList(abnormalData.get().iterator());
    28. // 如果不正常的数据出现达到一定次数,则输出报警信息
    29. if (list.size() >= numberOfTimes) {
    30. out.collect(Tuple2.of(value.f0 + " 超过指定阈值 ", list));
    31. // 报警信息输出后,清空状态
    32. abnormalData.clear();
    33. }
    34. }
    35. }

    调用自定义的状态监控,这里我们使用 a,b 来代表不同类型的监控数据,分别对其数据进行监控:

    1. final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
    2. DataStreamSource<Tuple2<String, Long>> tuple2DataStreamSource = env.fromElements(
    3. Tuple2.of("a", 50L), Tuple2.of("a", 80L), Tuple2.of("a", 400L),
    4. Tuple2.of("a", 100L), Tuple2.of("a", 200L), Tuple2.of("a", 200L),
    5. Tuple2.of("b", 100L), Tuple2.of("b", 200L), Tuple2.of("b", 200L),
    6. Tuple2.of("b", 500L), Tuple2.of("b", 600L), Tuple2.of("b", 700L));
    7. tuple2DataStreamSource
    8. .keyBy(0)
    9. .flatMap(new ThresholdWarning(100L, 3)) // 超过100的阈值3次后就进行报警
    10. .printToErr();
    11. env.execute("Managed Keyed State");

    输出如下结果如下:

    2.2 状态有效期

    以上任何类型的 keyed state 都支持配置有效期 (TTL) ,示例如下:

    1. StateTtlConfig ttlConfig = StateTtlConfig
    2. // 设置有效期为 10
    3. .newBuilder(Time.seconds(10))
    4. // 设置有效期更新规则,这里设置为当创建和写入时,都重置其有效期到规定的10
    5. .setUpdateType(StateTtlConfig.UpdateType.OnCreateAndWrite)
    6. /*设置只要值过期就不可见,另外一个可选值是ReturnExpiredIfNotCleanedUp,
    7. 代表即使值过期了,但如果还没有被物理删除,就是可见的*/
    8. .setStateVisibility(StateTtlConfig.StateVisibility.NeverReturnExpired)
    9. .build();
    10. ListStateDescriptor<Long> descriptor = new ListStateDescriptor<>("abnormalData", Long.class);
    11. descriptor.enableTimeToLive(ttlConfig);

    2.3 算子状态

    相比于键控状态,算子状态目前支持的存储类型只有以下三种:

    • ListState:存储列表类型的状态。
    • UnionListState:存储列表类型的状态,与 ListState 的区别在于:如果并行度发生变化,ListState 会将该算子的所有并发的状态实例进行汇总,然后均分给新的 Task;而 UnionListState 只是将所有并发的状态实例汇总起来,具体的划分行为则由用户进行定义。
    • BroadcastState:用于广播的算子状态。

    这里我们继续沿用上面的例子,假设此时我们不需要区分监控数据的类型,只要有监控数据超过阈值并达到指定的次数后,就进行报警,代码如下:

    1. public class ThresholdWarning extends RichFlatMapFunction<Tuple2<String, Long>,
    2. Tuple2<String, List<Tuple2<String, Long>>>> implements CheckpointedFunction {
    3. // 非正常数据
    4. private List<Tuple2<String, Long>> bufferedData;
    5. // checkPointedState
    6. private transient ListState<Tuple2<String, Long>> checkPointedState;
    7. // 需要监控的阈值
    8. private Long threshold;
    9. // 次数
    10. private Integer numberOfTimes;
    11. ThresholdWarning(Long threshold, Integer numberOfTimes) {
    12. this.threshold = threshold;
    13. this.numberOfTimes = numberOfTimes;
    14. this.bufferedData = new ArrayList<>();
    15. }
    16. @Override
    17. public void initializeState(FunctionInitializationContext context) throws Exception {
    18. // 注意这里获取的是OperatorStateStore
    19. checkPointedState = context.getOperatorStateStore().
    20. getListState(new ListStateDescriptor<>("abnormalData",
    21. TypeInformation.of(new TypeHint<Tuple2<String, Long>>() {
    22. })));
    23. // 如果发生重启,则需要从快照中将状态进行恢复
    24. if (context.isRestored()) {
    25. for (Tuple2<String, Long> element : checkPointedState.get()) {
    26. bufferedData.add(element);
    27. }
    28. }
    29. }
    30. @Override
    31. public void flatMap(Tuple2<String, Long> value,
    32. Collector<Tuple2<String, List<Tuple2<String, Long>>>> out) {
    33. Long inputValue = value.f1;
    34. // 超过阈值则进行记录
    35. if (inputValue >= threshold) {
    36. bufferedData.add(value);
    37. }
    38. // 超过指定次数则输出报警信息
    39. if (bufferedData.size() >= numberOfTimes) {
    40. // 顺便输出状态实例的hashcode
    41. out.collect(Tuple2.of(checkPointedState.hashCode() + "阈值警报!", bufferedData));
    42. bufferedData.clear();
    43. }
    44. }
    45. @Override
    46. public void snapshotState(FunctionSnapshotContext context) throws Exception {
    47. // 在进行快照时,将数据存储到checkPointedState
    48. checkPointedState.clear();
    49. for (Tuple2<String, Long> element : bufferedData) {
    50. checkPointedState.add(element);
    51. }
    52. }
    53. }

    调用自定义算子状态,这里需要将并行度设置为 1:

    1. final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
    2. // 开启检查点机制
    3. env.enableCheckpointing(1000);
    4. // 设置并行度为1
    5. DataStreamSource<Tuple2<String, Long>> tuple2DataStreamSource = env.setParallelism(1).fromElements(
    6. Tuple2.of("a", 50L), Tuple2.of("a", 80L), Tuple2.of("a", 400L),
    7. Tuple2.of("a", 100L), Tuple2.of("a", 200L), Tuple2.of("a", 200L),
    8. Tuple2.of("b", 100L), Tuple2.of("b", 200L), Tuple2.of("b", 200L),
    9. Tuple2.of("b", 500L), Tuple2.of("b", 600L), Tuple2.of("b", 700L));
    10. tuple2DataStreamSource
    11. .flatMap(new ThresholdWarning(100L, 3))
    12. .printToErr();
    13. env.execute("Managed Keyed State");
    14. }

    此时输出如下:

    在上面的调用代码中,我们将程序的并行度设置为 1,可以看到三次输出中状态实例的 hashcode 全是一致的,证明它们都同一个状态实例。假设将并行度设置为 2,此时输出如下:

    可以看到此时两次输出中状态实例的 hashcode 是不一致的,代表它们不是同一个状态实例,这也就是上文提到的,一个算子状态是与一个并发的算子实例所绑定的。同时这里只输出两次,是因为在并发处理的情况下,线程 1 可能拿到 5 个非正常值,线程 2 可能拿到 4 个非正常值,因为要大于 3 次才能输出,所以在这种情况下就会出现只输出两条记录的情况,所以需要将程序的并行度设置为 1。

    3.检查点机制

    3.1 CheckPoints

    为了使 Flink 的状态具有良好的容错性,Flink 提供了检查点机制 (CheckPoints)  。通过检查点机制,Flink 定期在数据流上生成 checkpoint barrier ,当某个算子收到 barrier 时,即会基于当前状态生成一份快照,然后再将该 barrier 传递到下游算子,下游算子接收到该 barrier 后,也基于当前状态生成一份快照,依次传递直至到最后的 Sink 算子上。当出现异常后,Flink 就可以根据最近的一次的快照数据将所有算子恢复到先前的状态。

    3.2 开启检查点

    默认情况下,检查点机制是关闭的,需要在程序中进行开启:

    1. // 开启检查点机制,并指定状态检查点之间的时间间隔
    2. env.enableCheckpointing(1000);
    3. // 其他可选配置如下:
    4. // 设置语义
    5. env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
    6. // 设置两个检查点之间的最小时间间隔
    7. env.getCheckpointConfig().setMinPauseBetweenCheckpoints(500);
    8. // 设置执行Checkpoint操作时的超时时间
    9. env.getCheckpointConfig().setCheckpointTimeout(60000);
    10. // 设置最大并发执行的检查点的数量
    11. env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);
    12. // 将检查点持久化到外部存储
    13. env.getCheckpointConfig().enableExternalizedCheckpoints(
    14.     ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);
    15. // 如果有更近的保存点时,是否将作业回退到该检查点
    16. env.getCheckpointConfig().setPreferCheckpointForRecovery(true);

    3.3 保存点机制

    保存点机制 (Savepoints) 是检查点机制的一种特殊的实现,它允许你通过手工的方式来触发 Checkpoint,并将结果持久化存储到指定路径中,主要用于避免 Flink 集群在重启或升级时导致状态丢失。示例如下:

    1. # 触发指定id的作业的Savepoint,并将结果存储到指定目录下
    2. bin/flink savepoint :jobId [:targetDirectory]

    4.状态后端

    4.1 状态管理器分类

    默认情况下,所有的状态都存储在 JVM 的堆内存中,在状态数据过多的情况下,这种方式很有可能导致内存溢出,因此 Flink 该提供了其它方式来存储状态数据,这些存储方式统一称为状态后端 (或状态管理器):

    主要有以下三种:

    1. MemoryStateBackend

    默认的方式,即基于 JVM 的堆内存进行存储,主要适用于本地开发和调试。

    2. FsStateBackend

    基于文件系统进行存储,可以是本地文件系统,也可以是 HDFS 等分布式文件系统。 需要注意而是虽然选择使用了 FsStateBackend ,但正在进行的数据仍然是存储在 TaskManager 的内存中的,只有在 checkpoint 时,才会将状态快照写入到指定文件系统上。

    3. RocksDBStateBackend

    RocksDBStateBackend 是 Flink 内置的第三方状态管理器,采用嵌入式的 key-value 型数据库 RocksDB 来存储正在进行的数据。等到 checkpoint 时,再将其中的数据持久化到指定的文件系统中,所以采用 RocksDBStateBackend 时也需要配置持久化存储的文件系统。之所以这样做是因为 RocksDB 作为嵌入式数据库安全性比较低,但比起全文件系统的方式,其读取速率更快;比起全内存的方式,其存储空间更大,因此它是一种比较均衡的方案。

    4.2 配置方式

    Flink 支持使用两种方式来配置后端管理器:

    第一种方式:基于代码方式进行配置,只对当前作业生效:

    1. // 配置 FsStateBackend
    2. env.setStateBackend(new FsStateBackend("hdfs://namenode:40010/flink/checkpoints"));
    3. // 配置 RocksDBStateBackend
    4. env.setStateBackend(new RocksDBStateBackend("hdfs://namenode:40010/flink/checkpoints"));

    配置 RocksDBStateBackend 时,需要额外导入下面的依赖:

    1. <dependency>
    2. <groupId>org.apache.flink</groupId>
    3. <artifactId>flink-statebackend-rocksdb_2.11</artifactId>
    4. <version>1.14.2</version>
    5. </dependency>

    第二种方式:基于 flink-conf.yaml 配置文件的方式进行配置,对所有部署在该集群上的作业都生效:

    1. state.backend: filesystem
    2. state.checkpoints.dir: hdfs://namenode:40010/flink/checkpoints
  • 相关阅读:
    gcc: 优化选项:fdevirtualize,polymorphic; inline;
    跟进 .NET 8 Blazor 之 ReuseTabs 支持 Query 属性绑定
    数据结构七:七大排序(插入排序,希尔排序,选择排序,堆排序冒泡排序,快速排序,归并排序)
    CockroachDB-读和写
    华为HCIE云计算之FA桌面云业务发放
    【嵌入式开发学习01】Arduino安装esp32-cam以及CameraWebServer实例的实现
    Vue笔记十:Vuex状态管理
    报错处理:Error: Redis server is running but Redis CLI cannot connect
    Go语言学习(四)-- 流程控制
    浏览器解析网站原理
  • 原文地址:https://blog.csdn.net/shangjg03/article/details/133548186