相对于其他流计算框架,Flink 一个比较重要的特性就是其支持有状态计算。即你可以将中间的计算结果进行保存,并提供给后续的计算使用:
具体而言,Flink 又将状态 (State) 分为 Keyed State 与 Operator State:
算子状态 (Operator State):顾名思义,状态是和算子进行绑定的,一个算子的状态不能被其他算子所访问到。官方文档上对 Operator State 的解释是:each operator state is bound to one parallel operator instance,所以更为确切的说一个算子状态是与一个并发的算子实例所绑定的,即假设算子的并行度是 2,那么其应有两个对应的算子状态:
键控状态 (Keyed State) :是一种特殊的算子状态,即状态是根据 key 值进行区分的,Flink 会为每类键值维护一个状态实例。如下图所示,每个颜色代表不同 key 值,对应四个不同的状态实例。需要注意的是键控状态只能在 KeyedStream 上进行使用,我们可以通过 stream.keyBy(...) 来得到 KeyedStream 。
Flink 提供了以下数据格式来管理和存储键控状态 (Keyed State):
以上所有增删改查方法不必硬记,在使用时通过语法提示来调用即可。这里给出一个具体的使用示例:假设我们正在开发一个监控系统,当监控数据超过阈值一定次数后,需要发出报警信息。这里之所以要达到一定次数,是因为由于偶发原因,偶尔一次超过阈值并不能代表什么,故需要达到一定次数后才触发报警,这就需要使用到 Flink 的状态编程。相关代码如下:
- public class ThresholdWarning extends
- RichFlatMapFunction<Tuple2<String, Long>, Tuple2<String, List<Long>>> {
- // 通过ListState来存储非正常数据的状态
- private transient ListState<Long> abnormalData;
- // 需要监控的阈值
- private Long threshold;
- // 触发报警的次数
- private Integer numberOfTimes;
-
- ThresholdWarning(Long threshold, Integer numberOfTimes) {
- this.threshold = threshold;
- this.numberOfTimes = numberOfTimes;
- }
-
- @Override
- public void open(Configuration parameters) {
- // 通过状态名称(句柄)获取状态实例,如果不存在则会自动创建
- abnormalData = getRuntimeContext().getListState(
- new ListStateDescriptor<>("abnormalData", Long.class));
- }
-
- @Override
- public void flatMap(Tuple2<String, Long> value, Collector<Tuple2<String, List<Long>>> out)
- throws Exception {
- Long inputValue = value.f1;
- // 如果输入值超过阈值,则记录该次不正常的数据信息
- if (inputValue >= threshold) {
- abnormalData.add(inputValue);
- }
- ArrayList<Long> list = Lists.newArrayList(abnormalData.get().iterator());
- // 如果不正常的数据出现达到一定次数,则输出报警信息
- if (list.size() >= numberOfTimes) {
- out.collect(Tuple2.of(value.f0 + " 超过指定阈值 ", list));
- // 报警信息输出后,清空状态
- abnormalData.clear();
- }
- }
- }
调用自定义的状态监控,这里我们使用 a,b 来代表不同类型的监控数据,分别对其数据进行监控:
- final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
- DataStreamSource<Tuple2<String, Long>> tuple2DataStreamSource = env.fromElements(
- Tuple2.of("a", 50L), Tuple2.of("a", 80L), Tuple2.of("a", 400L),
- Tuple2.of("a", 100L), Tuple2.of("a", 200L), Tuple2.of("a", 200L),
- Tuple2.of("b", 100L), Tuple2.of("b", 200L), Tuple2.of("b", 200L),
- Tuple2.of("b", 500L), Tuple2.of("b", 600L), Tuple2.of("b", 700L));
- tuple2DataStreamSource
- .keyBy(0)
- .flatMap(new ThresholdWarning(100L, 3)) // 超过100的阈值3次后就进行报警
- .printToErr();
- env.execute("Managed Keyed State");
输出如下结果如下:
以上任何类型的 keyed state 都支持配置有效期 (TTL) ,示例如下:
- StateTtlConfig ttlConfig = StateTtlConfig
- // 设置有效期为 10 秒
- .newBuilder(Time.seconds(10))
- // 设置有效期更新规则,这里设置为当创建和写入时,都重置其有效期到规定的10秒
- .setUpdateType(StateTtlConfig.UpdateType.OnCreateAndWrite)
- /*设置只要值过期就不可见,另外一个可选值是ReturnExpiredIfNotCleanedUp,
- 代表即使值过期了,但如果还没有被物理删除,就是可见的*/
- .setStateVisibility(StateTtlConfig.StateVisibility.NeverReturnExpired)
- .build();
- ListStateDescriptor<Long> descriptor = new ListStateDescriptor<>("abnormalData", Long.class);
- descriptor.enableTimeToLive(ttlConfig);
相比于键控状态,算子状态目前支持的存储类型只有以下三种:
这里我们继续沿用上面的例子,假设此时我们不需要区分监控数据的类型,只要有监控数据超过阈值并达到指定的次数后,就进行报警,代码如下:
- public class ThresholdWarning extends RichFlatMapFunction<Tuple2<String, Long>,
- Tuple2<String, List<Tuple2<String, Long>>>> implements CheckpointedFunction {
- // 非正常数据
- private List<Tuple2<String, Long>> bufferedData;
- // checkPointedState
- private transient ListState<Tuple2<String, Long>> checkPointedState;
- // 需要监控的阈值
- private Long threshold;
- // 次数
- private Integer numberOfTimes;
-
- ThresholdWarning(Long threshold, Integer numberOfTimes) {
- this.threshold = threshold;
- this.numberOfTimes = numberOfTimes;
- this.bufferedData = new ArrayList<>();
- }
-
- @Override
- public void initializeState(FunctionInitializationContext context) throws Exception {
- // 注意这里获取的是OperatorStateStore
- checkPointedState = context.getOperatorStateStore().
- getListState(new ListStateDescriptor<>("abnormalData",
- TypeInformation.of(new TypeHint<Tuple2<String, Long>>() {
- })));
- // 如果发生重启,则需要从快照中将状态进行恢复
- if (context.isRestored()) {
- for (Tuple2<String, Long> element : checkPointedState.get()) {
- bufferedData.add(element);
- }
- }
- }
-
- @Override
- public void flatMap(Tuple2<String, Long> value,
- Collector<Tuple2<String, List<Tuple2<String, Long>>>> out) {
- Long inputValue = value.f1;
- // 超过阈值则进行记录
- if (inputValue >= threshold) {
- bufferedData.add(value);
- }
- // 超过指定次数则输出报警信息
- if (bufferedData.size() >= numberOfTimes) {
- // 顺便输出状态实例的hashcode
- out.collect(Tuple2.of(checkPointedState.hashCode() + "阈值警报!", bufferedData));
- bufferedData.clear();
- }
- }
-
- @Override
- public void snapshotState(FunctionSnapshotContext context) throws Exception {
- // 在进行快照时,将数据存储到checkPointedState
- checkPointedState.clear();
- for (Tuple2<String, Long> element : bufferedData) {
- checkPointedState.add(element);
- }
- }
- }
调用自定义算子状态,这里需要将并行度设置为 1:
- final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
- // 开启检查点机制
- env.enableCheckpointing(1000);
- // 设置并行度为1
- DataStreamSource<Tuple2<String, Long>> tuple2DataStreamSource = env.setParallelism(1).fromElements(
- Tuple2.of("a", 50L), Tuple2.of("a", 80L), Tuple2.of("a", 400L),
- Tuple2.of("a", 100L), Tuple2.of("a", 200L), Tuple2.of("a", 200L),
- Tuple2.of("b", 100L), Tuple2.of("b", 200L), Tuple2.of("b", 200L),
- Tuple2.of("b", 500L), Tuple2.of("b", 600L), Tuple2.of("b", 700L));
- tuple2DataStreamSource
- .flatMap(new ThresholdWarning(100L, 3))
- .printToErr();
- env.execute("Managed Keyed State");
- }
此时输出如下:
在上面的调用代码中,我们将程序的并行度设置为 1,可以看到三次输出中状态实例的 hashcode 全是一致的,证明它们都同一个状态实例。假设将并行度设置为 2,此时输出如下:
可以看到此时两次输出中状态实例的 hashcode 是不一致的,代表它们不是同一个状态实例,这也就是上文提到的,一个算子状态是与一个并发的算子实例所绑定的。同时这里只输出两次,是因为在并发处理的情况下,线程 1 可能拿到 5 个非正常值,线程 2 可能拿到 4 个非正常值,因为要大于 3 次才能输出,所以在这种情况下就会出现只输出两条记录的情况,所以需要将程序的并行度设置为 1。
为了使 Flink 的状态具有良好的容错性,Flink 提供了检查点机制 (CheckPoints) 。通过检查点机制,Flink 定期在数据流上生成 checkpoint barrier ,当某个算子收到 barrier 时,即会基于当前状态生成一份快照,然后再将该 barrier 传递到下游算子,下游算子接收到该 barrier 后,也基于当前状态生成一份快照,依次传递直至到最后的 Sink 算子上。当出现异常后,Flink 就可以根据最近的一次的快照数据将所有算子恢复到先前的状态。
默认情况下,检查点机制是关闭的,需要在程序中进行开启:
- // 开启检查点机制,并指定状态检查点之间的时间间隔
- env.enableCheckpointing(1000);
-
- // 其他可选配置如下:
- // 设置语义
- env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
- // 设置两个检查点之间的最小时间间隔
- env.getCheckpointConfig().setMinPauseBetweenCheckpoints(500);
- // 设置执行Checkpoint操作时的超时时间
- env.getCheckpointConfig().setCheckpointTimeout(60000);
- // 设置最大并发执行的检查点的数量
- env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);
- // 将检查点持久化到外部存储
- env.getCheckpointConfig().enableExternalizedCheckpoints(
- ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);
- // 如果有更近的保存点时,是否将作业回退到该检查点
- env.getCheckpointConfig().setPreferCheckpointForRecovery(true);
保存点机制 (Savepoints) 是检查点机制的一种特殊的实现,它允许你通过手工的方式来触发 Checkpoint,并将结果持久化存储到指定路径中,主要用于避免 Flink 集群在重启或升级时导致状态丢失。示例如下:
- # 触发指定id的作业的Savepoint,并将结果存储到指定目录下
- bin/flink savepoint :jobId [:targetDirectory]
默认情况下,所有的状态都存储在 JVM 的堆内存中,在状态数据过多的情况下,这种方式很有可能导致内存溢出,因此 Flink 该提供了其它方式来存储状态数据,这些存储方式统一称为状态后端 (或状态管理器):
主要有以下三种:
1. MemoryStateBackend
默认的方式,即基于 JVM 的堆内存进行存储,主要适用于本地开发和调试。
2. FsStateBackend
基于文件系统进行存储,可以是本地文件系统,也可以是 HDFS 等分布式文件系统。 需要注意而是虽然选择使用了 FsStateBackend ,但正在进行的数据仍然是存储在 TaskManager 的内存中的,只有在 checkpoint 时,才会将状态快照写入到指定文件系统上。
3. RocksDBStateBackend
RocksDBStateBackend 是 Flink 内置的第三方状态管理器,采用嵌入式的 key-value 型数据库 RocksDB 来存储正在进行的数据。等到 checkpoint 时,再将其中的数据持久化到指定的文件系统中,所以采用 RocksDBStateBackend 时也需要配置持久化存储的文件系统。之所以这样做是因为 RocksDB 作为嵌入式数据库安全性比较低,但比起全文件系统的方式,其读取速率更快;比起全内存的方式,其存储空间更大,因此它是一种比较均衡的方案。
Flink 支持使用两种方式来配置后端管理器:
第一种方式:基于代码方式进行配置,只对当前作业生效:
- // 配置 FsStateBackend
- env.setStateBackend(new FsStateBackend("hdfs://namenode:40010/flink/checkpoints"));
- // 配置 RocksDBStateBackend
- env.setStateBackend(new RocksDBStateBackend("hdfs://namenode:40010/flink/checkpoints"));
配置 RocksDBStateBackend 时,需要额外导入下面的依赖:
- <dependency>
- <groupId>org.apache.flink</groupId>
- <artifactId>flink-statebackend-rocksdb_2.11</artifactId>
- <version>1.14.2</version>
- </dependency>
第二种方式:基于 flink-conf.yaml 配置文件的方式进行配置,对所有部署在该集群上的作业都生效:
- state.backend: filesystem
- state.checkpoints.dir: hdfs://namenode:40010/flink/checkpoints