• 【算法训练-搜索算法 一】【DFS网格搜索框架】岛屿数量、岛屿的最大面积、岛屿的周长


    废话不多说,喊一句号子鼓励自己:程序员永不失业,程序员走向架构!本篇Blog的主题是【搜索算法】,使用【数组】这个基本的数据结构来实现,这个高频题的站点是:CodeTop,筛选条件为:目标公司+最近一年+出现频率排序,由高到低的去牛客TOP101去找,只有两个地方都出现过才做这道题(CodeTop本身汇聚了LeetCode的来源),确保刷的题都是高频要面试考的题。
    在这里插入图片描述
    明确目标题后,附上题目链接,后期可以依据解题思路反复快速练习,题目按照题干的基本数据结构分类,且每个分类的第一篇必定是对基础数据结构的介绍

    岛屿数量

    来做这道传说中的岛屿数量,我们所熟悉的 **DFS(深度优先搜索)**问题通常是在树或者图结构上进行的。而我们今天要讨论的 DFS 问题,是在一种「网格」结构中进行的。岛屿问题是这类网格 DFS 问题的典型代表。网格结构遍历起来要比二叉树复杂一些,如果没有掌握一定的方法,DFS 代码容易写得冗长繁杂

    题干

    在这里插入图片描述

    解题思路

    首先明确下这一类题目该如何求解:

    1 网格问题的基本概念

    我们首先明确一下岛屿问题中的网格结构是如何定义的,以方便我们后面的讨论。网格问题是由 m×n个小方格组成一个网格,每个小方格与其上下左右四个方格认为是相邻的,要在这样的网格上进行某种搜索。

    岛屿问题是一类典型的网格问题。每个格子中的数字可能是 0 或者 1。我们把数字为 0 的格子看成海洋格子,数字为 1 的格子看成陆地格子,这样相邻的陆地格子就连接成一个岛屿
    在这里插入图片描述
    在这样一个设定下,就出现了各种岛屿问题的变种,包括岛屿的数量、面积、周长等。不过这些问题,基本都可以用 DFS 遍历来解决

    2 DFS 的基本结构

    网格结构要比二叉树结构稍微复杂一些,它其实是一种简化版的图结构。要写好网格上的 DFS 遍历,我们首先要理解二叉树上的 DFS 遍历方法,再类比写出网格结构上的 DFS 遍历。我们写的二叉树 DFS 遍历一般是这样的:

    void traverse(TreeNode root) {
        // 判断 base case
        if (root == null) {
            return;
        }
        // 访问两个相邻结点:左子结点、右子结点
        traverse(root.left);
        traverse(root.right);
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    可以看到,二叉树的 DFS 有两个要素:「访问相邻结点」和「判断 base case」。

    • 第一个要素是访问相邻结点。二叉树的相邻结点非常简单,只有左子结点和右子结点两个。二叉树本身就是一个递归定义的结构:一棵二叉树,它的左子树和右子树也是一棵二叉树。那么我们的 DFS 遍历只需要递归调用左子树和右子树即可。

    • 第二个要素是 判断 base case。一般来说,二叉树遍历的 base case 是 root == null。这样一个条件判断其实有两个含义:一方面,这表示 root 指向的子树为空,不需要再往下遍历了。另一方面,在 root == null 的时候及时返回,可以让后面的 root.leftroot.right 操作不会出现空指针异常。

    对于网格上的 DFS,我们完全可以参考二叉树的 DFS,写出网格 DFS 的两个要素:

    1. 首先,网格结构中的格子有多少相邻结点?答案是上下左右四个。对于格子 (r, c) 来说(r 和 c 分别代表行坐标和列坐标),四个相邻的格子分别是 (r-1, c)、(r+1, c)、(r, c-1)、(r, c+1)。换句话说,网格结构是「四叉」的

    在这里插入图片描述

    1. 其次,网格 DFS 中的 base case 是什么?从二叉树的 base case 对应过来,应该是网格中不需要继续遍历、grid[r][c] 会出现数组下标越界异常的格子,也就是那些超出网格范围的格子

    在这里插入图片描述

    这一点稍微有些反直觉,坐标竟然可以临时超出网格的范围?这种方法我称为「先污染后治理」—— 甭管当前是在哪个格子,先往四个方向走一步再说,如果发现走出了网格范围再赶紧返回。这跟二叉树的遍历方法是一样的,先递归调用,发现 root == null 再返回。

    这样,我们得到了网格 DFS 遍历的框架代码

    void dfs(int[][] grid, int r, int c) {
        // 判断 base case
        // 如果坐标 (r, c) 超出了网格范围,直接返回
        if (!inArea(grid, r, c)) {
            return;
        }
        // 访问上、下、左、右四个相邻结点
        dfs(grid, r - 1, c);
        dfs(grid, r + 1, c);
        dfs(grid, r, c - 1);
        dfs(grid, r, c + 1);
    }
    
    // 判断坐标 (r, c) 是否在网格中
    boolean inArea(int[][] grid, int r, int c) {
        return 0 <= r && r < grid.length 
            	&& 0 <= c && c < grid[0].length;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18

    3 如何避免重复遍历

    网格结构的 DFS 与二叉树的 DFS 最大的不同之处在于,遍历中可能遇到遍历过的结点。这是因为,网格结构本质上是一个「图」,我们可以把每个格子看成图中的结点,每个结点有向上下左右的四条边。在图中遍历时,自然可能遇到重复遍历结点
    在这里插入图片描述
    如何避免这样的重复遍历呢?答案是标记已经遍历过的格子。以岛屿问题为例,我们需要在所有值为 1 的陆地格子上做 DFS 遍历。每走过一个陆地格子,就把格子的值改为 2,这样当我们遇到 2 的时候,就知道这是遍历过的格子了。也就是说,每个格子可能取三个值:

    • 0 —— 海洋格子
    • 1 —— 陆地格子(未遍历过)
    • 2 —— 陆地格子(已遍历过)

    我们在框架代码中加入避免重复遍历的语句:

    void dfs(int[][] grid, int r, int c) {
        // 判断 base case
        if (!inArea(grid, r, c)) {
            return;
        }
        // 如果这个格子不是岛屿,直接返回
        if (grid[r][c] != 1) {
            return;
        }
        grid[r][c] = 2; // 将格子标记为「已遍历过」
        
        // 访问上、下、左、右四个相邻结点
        dfs(grid, r - 1, c);
        dfs(grid, r + 1, c);
        dfs(grid, r, c - 1);
        dfs(grid, r, c + 1);
    }
    
    // 判断坐标 (r, c) 是否在网格中
    boolean inArea(int[][] grid, int r, int c) {
        return 0 <= r && r < grid.length 
            	&& 0 <= c && c < grid[0].length;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23

    在这里插入图片描述

    代码实现

    给出代码实现基本档案

    基本数据结构数组
    辅助数据结构
    算法搜索算法
    技巧

    其中数据结构、算法和技巧分别来自:

    • 10 个数据结构:数组、链表、栈、队列、散列表、二叉树、堆、跳表、图、Trie 树
    • 10 个算法:递归、排序、二分查找、搜索、哈希算法、贪心算法、分治算法、回溯算法、动态规划、字符串匹配算法
    • 技巧:双指针、滑动窗口、中心扩散

    当然包括但不限于以上

    import java.util.*;
    
    
    public class Solution {
        /**
         * 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
         *
         * 判断岛屿数量
         * @param grid char字符型二维数组
         * @return int整型
         */
        public int solve (char[][] grid) {
            // 记录岛屿数量
            int count = 0;
            for (int r = 0; r < grid.length; r++) {
                for (int c = 0; c < grid[0].length; c++) {
                    // 找到岛屿入口
                    if (grid[r][c] == '1') {
                        // 记录岛屿数量
                        count++;
                        // 发现并设置出完整岛屿轮廓
                        dfsFind(grid, r, c);
                    }
                }
            }
    
            return count;
        }
    
        private void dfsFind(char[][] grid, int r, int c) {
            // 遍历到边界则返回
            if (!isInArea(grid, r, c)) {
                return;
            }
            // 遍历到非陆地的地方直接返回【海洋以及已探索陆地】
            if (grid[r][c] != '1') {
                return;
            }
            // 遍历过的陆地设置为2,防止重复计数
            grid[r][c] = '2';
    
            dfsFind(grid, r, c + 1);
            dfsFind(grid, r, c - 1);
            dfsFind(grid, r + 1, c);
            dfsFind(grid, r - 1, c);
        }
    
        private boolean isInArea(char[][] grid, int r, int c) {
            // 判断当前坐标是否仍然在岛屿范围内
            return r >= 0 && r < grid.length && c >= 0 && c < grid[0].length;
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52

    复杂度分析

    计算岛屿数量的问题通常通过深度优先搜索(DFS)或广度优先搜索(BFS)来解决。以下是使用深度优先搜索(DFS)算法来计算岛屿数量的时间和空间复杂度分析:

    时间复杂度: 在最坏情况下,DFS需要访问矩阵中的每个格子一次,因此时间复杂度为O(M*N),其中M是矩阵的行数,N是矩阵的列数。

    空间复杂度: 空间复杂度取决于递归调用的深度。在最坏情况下,如果整个矩阵都是陆地,DFS的递归深度可能达到MN,因此空间复杂度为O(MN)。通常,DFS的空间复杂度还包括了用于存储访问标记的数据结构(如一个额外的矩阵或集合),因此实际的空间复杂度可能稍微高一些。

    需要注意的是,如果使用迭代而不是递归来实现DFS,可以通过使用栈来降低空间复杂度,但时间复杂度仍然是O(M*N)。

    总之,岛屿数量问题的时间复杂度是O(MN),空间复杂度通常为O(MN),但在一些优化的情况下可以降低到O(min(M, N))。这取决于具体的实现方式和问题的输入。

    岛屿的最大面积【MID】

    接着岛屿数量的题,继续做与之相关的岛屿最大面积的计算

    题干

    在这里插入图片描述

    解题思路

    这道题目只需要对每个岛屿做 DFS 遍历,求出每个岛屿的面积就可以了。求岛屿面积的方法也很简单,代码如下,每遍历到一个格子,就把面积加一

    int area(int[][] grid, int r, int c) {  
        return 1 
            + area(grid, r - 1, c)
            + area(grid, r + 1, c)
            + area(grid, r, c - 1)
            + area(grid, r, c + 1);
    }
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    代码实现

    给出代码实现基本档案

    基本数据结构数组
    辅助数据结构
    算法搜索算法
    技巧

    其中数据结构、算法和技巧分别来自:

    • 10 个数据结构:数组、链表、栈、队列、散列表、二叉树、堆、跳表、图、Trie 树
    • 10 个算法:递归、排序、二分查找、搜索、哈希算法、贪心算法、分治算法、回溯算法、动态规划、字符串匹配算法
    • 技巧:双指针、滑动窗口、中心扩散

    当然包括但不限于以上

    class Solution {
        public int maxAreaOfIsland(int[][] grid) {
             int maxArea = 0;
            for (int r = 0; r < grid.length; r++) {
                for (int c = 0; c < grid[0].length; c++) {
                    // 找到岛屿入口
                    if (grid[r][c] == 1) {
                        // 发现并设置出完整岛屿轮廓
                        int area = area(grid, r, c);
                        // 比较并设置最大面积
                        maxArea = Math.max(maxArea, area);
                    }
                }
            }
              return maxArea;
        }
    
         private int area(int[][] grid, int r, int c) {
            // 遍历到边界则返回0
            if (!isInArea(grid, r, c)) {
                return 0;
            }
            // 遍历到非陆地的地方直接返回0【海洋以及已探索陆地】
            if (grid[r][c] != 1) {
                return 0;
            }
            // 遍历过的陆地设置为2,防止重复计数
            grid[r][c] = 2;
    
            // 每发现一格岛屿,面积就加1 
            return 1 + area(grid, r, c + 1) +  area(grid, r, c - 1) + area(grid,
                    r + 1, c) + area(grid, r - 1, c);
        }
    
        private boolean isInArea(int[][] grid, int r, int c) {
            // 判断当前坐标是否仍然在岛屿范围内
            return r >= 0 && r < grid.length && c >= 0 && c < grid[0].length;
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39

    复杂度分析

    计算岛屿的最大面积通常也使用深度优先搜索(DFS)或广度优先搜索(BFS)来解决。以下是使用DFS算法来计算岛屿最大面积的时间和空间复杂度分析:

    时间复杂度: 在最坏情况下,DFS需要访问矩阵中的每个格子一次,因此时间复杂度仍然是O(MN),其中M是矩阵的行数,N是矩阵的列数。每次访问一个岛屿格子时,需要递归地访问与之相邻的陆地格子,但总体的时间复杂度仍然是O(MN)。

    空间复杂度: 空间复杂度取决于递归调用的深度。在最坏情况下,如果整个矩阵都是陆地,DFS的递归深度可能达到MN,因此空间复杂度为O(MN)。通常,DFS的空间复杂度还包括了用于存储访问标记的数据结构(如一个额外的矩阵或集合),因此实际的空间复杂度可能稍微高一些。

    与计算岛屿数量类似,如果使用迭代而不是递归来实现DFS,可以通过使用栈来降低空间复杂度,但时间复杂度仍然是O(M*N)。

    总结一下,计算岛屿的最大面积问题的时间复杂度是O(MN),空间复杂度通常为O(MN),但在一些优化的情况下可以降低到O(min(M, N))。这仍然取决于具体的实现方式和问题的输入。

    岛屿的周长

    继续用DFS网络搜索框架解这道题

    题干

    在这里插入图片描述

    解题思路

    岛屿的周长是计算岛屿全部的「边缘」,而这些边缘就是我们在 DFS 遍历中,dfs 函数返回的位置。观察题目示例,我们可以将岛屿的周长中的边分为两类,如下图所示。黄色的边是与网格边界相邻的周长,而蓝色的边是与海洋格子相邻的周长
    在这里插入图片描述
    当我们的 dfs 函数因为「坐标 (r, c) 超出网格范围」返回的时候,实际上就经过了一条黄色的边;而当函数因为「当前格子是海洋格子」返回的时候,实际上就经过了一条蓝色的边。这样,我们就把岛屿的周长跟 DFS 遍历联系起来了

    代码实现

    给出代码实现基本档案

    基本数据结构数组
    辅助数据结构
    算法搜索算法
    技巧

    其中数据结构、算法和技巧分别来自:

    • 10 个数据结构:数组、链表、栈、队列、散列表、二叉树、堆、跳表、图、Trie 树
    • 10 个算法:递归、排序、二分查找、搜索、哈希算法、贪心算法、分治算法、回溯算法、动态规划、字符串匹配算法
    • 技巧:双指针、滑动窗口、中心扩散

    当然包括但不限于以上

    class Solution {
        public int islandPerimeter(int[][] grid) {
            int perimeter = 0;
            for (int r = 0; r < grid.length; r++) {
                for (int c = 0; c < grid[0].length; c++) {
                    if (grid[r][c] == 1) {
                        perimeter = dfsLength(grid, r, c);
                    }
                }
            }
            return perimeter;
        }
    
        private int dfsLength(int[][] grid, int r, int c) {
            // 1 函数因为「坐标 (r, c) 超出网格范围」返回,对应一条黄色的边
            if (!isInArea(grid, r, c)) {
                return 1;
            }
            // 2 分开讨论非陆地【海洋以及已探索陆地】
            // 2-1 函数因为「当前格子是海洋格子」返回,对应一条蓝色的边
            if (grid[r][c] == 0) {
                return 1;
            }
            // 2-2 函数因为「当前格子是已遍历的陆地格子」返回,和周长没关系
            if (grid[r][c] ==2 ) {
                return 0;
            }
            grid[r][c] = 2;
            // 继续向四面拓展
            return dfsLength(grid, r, c + 1) + dfsLength(grid, r, c - 1) + dfsLength(grid,
                    r + 1, c) + dfsLength(grid, r - 1, c);
        }
    
        private boolean isInArea(int[][] grid, int r, int c) {
            return r >= 0 && r < grid.length && c >= 0 && c < grid[0].length;
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37

    复杂度分析

    计算岛屿的周长通常可以在深度优先搜索(DFS)或广度优先搜索(BFS)的基础上实现。以下是使用DFS算法来计算岛屿周长的时间和空间复杂度分析:

    时间复杂度: 在最坏情况下,DFS需要访问矩阵中的每个岛屿格子一次,因此时间复杂度为O(M*N),其中M是矩阵的行数,N是矩阵的列数。对于每个岛屿格子,DFS会探索与之相邻的四个方向,所以在最坏情况下,访问一个岛屿格子的操作的时间复杂度是O(1)。

    空间复杂度: 空间复杂度取决于递归调用的深度。在最坏情况下,如果整个矩阵都是陆地,DFS的递归深度可能达到MN,因此空间复杂度为O(MN)。通常,DFS的空间复杂度还包括了用于存储访问标记的数据结构(如一个额外的矩阵或集合),因此实际的空间复杂度可能稍微高一些。

    与计算岛屿数量和最大面积不同,计算岛屿周长问题的时间复杂度是O(M*N),因为它只涉及到对每个岛屿格子的一次访问和检查。

    需要注意的是,虽然DFS是一种递归算法,但在实际应用中,可以考虑使用迭代的方式来实现,以避免潜在的栈溢出问题。此时,空间复杂度会有所降低。

    总结一下,计算岛屿周长问题的时间复杂度是O(MN),空间复杂度通常为O(MN),但在一些优化的情况下可以降低到O(min(M, N))。这取决于具体的实现方式和问题的输入。

    拓展知识:DFS在网格中的应用

    深度优先搜索(Depth-First Search,DFS)是一种用于图遍历和搜索的算法,它可以应用于各种问题,包括在网格中的问题。在网格中,DFS通常用于解决以下类型的问题:

    1. 迷宫求解:DFS可用于寻找从一个起始点到达目标点的路径。在一个网格迷宫中,你可以使用DFS来探索不同的路径,直到找到通向目标的路径或者确定没有可行的路径。

    2. 岛屿计数:给定一个由陆地和水组成的网格,DFS可以用于计算陆地区域的数量。通过从一个陆地格子开始,DFS可以递归地标记与之相连的所有陆地格子,从而统计出岛屿的数量

    3. 联通分量计算:DFS还可用于计算一个网格中的连通分量数量。连通分量是指由相互连接的格子组成的区域。DFS可以用于标记和计数这些连通分量。

    4. 单词搜索游戏:在字母矩阵中查找给定单词的存在是另一个DFS的应用。DFS可用于从一个字母格子出发,尝试构建单词并逐步扩展搜索路径,直到找到单词或确定不存在。

    5. 图像填充:DFS可以用于图像处理,例如在图像上进行填充操作。你可以从一个起始像素开始,使用DFS来填充相邻像素,直到达到某个条件为止。

    在DFS的应用中,关键是选择适当的起始点,并设计好递归函数或迭代算法,以便在网格中进行深度优先搜索。DFS通常需要使用一个数据结构来记录已经访问过的格子,以防止重复访问,通常可以使用一个集合(集合或哈希表)来实现这个目的

    需要注意的是,DFS是一种递归算法,可能会导致栈溢出问题,因此在实际应用中,可能需要考虑使用迭代的方式来实现DFS,或者使用递归的时候设置递归深度限制,以避免潜在的问题。

  • 相关阅读:
    使用Docker构建轻量级Linux容器
    C++读取系统剪贴板数据(windows)
    【智能优化算法-灰狼算法】基于狩猎 (DLH) 搜索策略的灰狼算法求解单目标优化问题附matlab代码
    玩转redis(一)——基础数据结构
    TYVJ P1026 犁田机器人
    从Java反序列化漏洞题看CodeQL数据流
    快递物流类API推荐
    Kafka - 03 Kafka单机环境和伪集群环境的搭建
    Mongo 实现简单全文检索
    Go runtime 调度器精讲(九):系统调用引起的抢占
  • 原文地址:https://blog.csdn.net/sinat_33087001/article/details/133520357